## Directed Forest

In this problem, you will be given a directed forest... wait what? A directed forest? Does that even exist?
Well, here in programming world, everything is possible. So let me describe what is meant by a directed forest first. A directed forest is just a set of one or more directed trees, and, a directed tree is just like a normal tree, except the edges are directed. Oh well, we call that a DAG (Directed Acyclic Graph), you'd say, but, I'm not sure if both are same. But I can say this, a directed tree is a DAG whose underlying undirected graph is a tree.
Now, come back to what I was saying earlier, you will be given a directed forest, and you have to make sets of nodes. But there is a restriction, if node $A$ is an ancestor of node $B$ in the given forest, then $A$ and $B$ cannot be in the same set. If you do not know what is an ancestor, if there is a directed path from node $A$ to $B$, then $A$ is the ancestor of $B$. Can you find out what would be the minimum number of such sets to contain all of the nodes?

## Input

Input starts with an integer $T$ ( $T<=100$ ), the number of test cases. For each case, there will be two integers $N$ and $E$, the number of nodes and number of edges respectively. Nodes are numbered from 1 to $N$. Then, there are $E$ pairs of integers ( $u, v$ ), each denoting a directed edge from $u$ to $v$. Here you can assume, $1<=N<=10^{5}, 0<=E<N$, and $1<=u, v<=N$. Input file is large, use faster IO methods. Also, there is a blank line before every case.

## Output

For each test case, first print a line of the format "Case $X: Y$ ", without the quotes of course, where $X$ is the test case number starting from 1, and $Y$ is the required answer. Please check sample input and output for more details.

| Sample Input | Sample Output |
| :--- | :--- |
| 3 | Case 1:2 |
| 42 | Case 2:4 |
| 12 | Case 3:2 |
| 34 |  |
| 43 |  |
| 12 |  |
| 23 |  |
| 41 |  |
| 73 |  |
| 37 |  |
| 15 |  |

