

Hosted By

Rajshahi University of Engineering and Technology

(RUET)

Rajshahi, Bangladesh

September 12, 2015

You get 22 Pages

11 Problems

&

300 Minutes

Rules for NCPC 2015

a) Solutions to problems submitted for judging are called runs. Each run is judged as accepted or

rejected by the judge, and the team is notified of the results. Submitted codes should not contain

team or University name and the file name should not have any white space.

b) A contestant may submit a clarification request to judges. If the judges agree that an ambiguity

or error exists, a clarification will be issued to all contestants.

c) Contestants are not to converse with anyone except members of their team and personnel

designated by the organizing committee while seated at the team desk. But they cannot even talk

with their team members when they are walking around the contest floor to have food or any

other purpose. Systems support staff may advise contestants on system-related problems such as

explaining system error messages. Coaches should not try to enter the contest area under any

circumstances.

d) While the contest is scheduled for a particular time length (five hours), the contest director

has the authority to alter the duration of the contest in the event of unforeseen difficulties.

Should the contest duration be altered, every attempt will be made to notify contestants in a

timely and uniform manner.

e) A team may be disqualified by the Contest Director for any activity that jeopardizes the

contest such as dislodging extension cords, unauthorized modification of contest materials,

distracting behavior of communicating with other teams.

f) Contestants will have foods available in their contest room during the contest. So they cannot

leave the contest room during the contest without permission. The contestants are not allowed

to communicate with any contestant (Even contestants of his own team) or coach while are

outside the contest floor.

 g) Teams are not allowed to bring calculators, mobile phones or any machine-readable devices

like CD, DVD, Pen-drive, IPOD, MP3/MP4 players, floppy disks etc.

h) With the help of the volunteers, the contestants can have printouts of their codes for

debugging purposes. Passing of printed codes to other teams is strictly prohibited.

i) The decision of the judges is final.

j) Teams should inform the volunteers if they don’t get reply from the judges within 10 minutes

of submission. Volunteers will inform the judges for further action. Teams should also notify the

volunteers if they cannot log in into the PC^2 system. This sort of complains will not be

entertained after the contest.

A Morphing Bitmaps

Most animation tools that support 2D animation support defining some keyframes where the

user will specify what the image will like at a particular time for that particular frame. The user

tells the tool how many frames to use (or how long the animation will run). The tool would then

generate the intermediate frames so that the transition from one frame to another looks smooth.

For this particular problem, we would address the problem from a different perspective. We

would supply a source frame and a target frame as keyframes. The problem is to find out the

minimum number of frames needed to go from source to target.

To keep it simple, we are only dealing with bitmap keyframes. Here each pixel will be either black

or white. The pixels can travel from one location to another from frame to frame – infact,

multiple black pixels can travel going from one frame to the next one. Each pixel can move one

cell up, down, left or right. While traveling a pixel is allowed to collide with another. As the target

keyframe can have more (or less) black pixels compared to the source keyframe, we need some

sort of mechanism to generate new (or to eat up existing) black pixels. We will allow a black pixel

in one frame to turn any combination of it's four neighboring pixels (up, down, left and right)

black to generate new black pixels when needed. We will also allow a black pixel in one frame to

turn itself white in the next frame if needed. Without the help of a neighboring black pixel, a

pixel won't turn black by itself. To further simplify, we'll also assume that the source and target

key frames will have at least one black pixel. For example, a black pixel can turn its top, left and

right pixels black (not modifying the bottom pixel) and turn itself white – all of this going from

one frame to the next. However, a black pixel cannot travel two pixels to the right in one frame

as it's allowed to travel only one cell in a frame.

The following illustration may help explain the process:

Input

There can be several test cases (less than 500). Each test case will start with 2 integers, the

number of rows, R (1 <= R <= 100) and columns C (1 <= C <= 100) for the source and target

bitmap keyframes. The next R lines will contain C characters each, defining the source keyframe.

The R lines right after that will define the target keyframe in the same fashion. Each character of

the keyframe will either be a '.' denoting white pixels or be '#' denoting a black pixel. We can

assume that the maximum number of black pixels in a keyframe will be less than 4,000. A test

case with R = 0 and C = 0 will signify the end of input.

Output

Output for each test case will start with the case label in the format “Case k: ” where k is the

case number (starting from 1) followed by the number of frames needed to go from the source

keyframe to the target keyframe.

Sample Input Output for Sample Input
10 13

.............

.............

.###.........

....####.....

........###..

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

...........##

........###..

.....###.....

..###........

2 2

..

.#

..

.#

0 0

Case 1: 7

Case 2: 0

Problem Setter: Monirul Hasan

Special Thanks: Muhammed Hedayet

B Palindromic Bases

A palindrome is a number which looks the same when reversed. 1, 11, 343 etc. are examples of

palindromes, while 12, 1122 etc. are not. Interesting thing is, some number may not be

palindrome in decimal but in other bases. For example, if we convert 12 in base 5, (12)10 = (22)5.

So we can see that 12 is a palindrome in base 5. Length of a palindrome is the number of digits

in that number. No leading zeroes are allowed in palindromes.

Given a number N, how many bases B are there, where N will be an even length palindrome if

represented as a B base number.

Input

First line will contain an integer number T (0<T≤100), number of test cases. Each case contains

one line with an integer N (0≤N≤10^14).

Output

For each case print the case number then the answer. If there are infinite bases possible for a

particular N, you should output “Infinity”. See sample I/O for more clarification.

Sample Input Output for Sample Input
3

3

4

12

Case 1: 1

Case 2: 1

Case 3: 2

Explanation for sample inputs:

Case 1: the base is 2.

Case 2: the base is 3.

Case 3: the bases are 5 and 11.

Problem Setter: Hasnain Heickal

Special Thanks: Muhammad Ridowan

C Farey Sequence

The Farey sequence of order n is the sequence of completely reduced fractions between 0 and 1
which, when in lowest terms, have denominators less than or equal to n, arranged in ascending
order. Farey sequence for different values of n are shown in the figure on the left below:

1

1
,

1

0
1F

1

1
,

4

3
,

3

2
,

2

1
,

3

1
,

4

1
,

1

0
4F

1

1
,

7

6
,

6

5
,

5

4
,

4

3
,

7

5
,

3

2
,

5

3
,

7

4
,

2

1
,

7

3
,

5

2
,

3

1
,

7

2
,

4

1
,

5

1
,

6

1
,

7

1
,

1

0
7F

Figure 1: Figure 2: Five desired pairs in F4

It is very well known that if
1

1

n

m
 and

2

2

n

m
 are two consecutive fractions of a Farey Sequence

then 12112 nmnm . But many fractions which are not consecutive also show this property. For

example, in F7,
5

2
 and

2

1
also show this property although they are not consecutive fractions in

F7. Given the value of n, your job is to find number of pair of non-consecutive fractions
i

i

n

m

and
j

j

n

m
, such that 𝑚𝑗𝑛𝑖 − 𝑚𝑖𝑛𝑗 = 1.

Input

Input file contains at most 20000 lines of input. Each line contains a positive integer which

denotes the value of n (0 < n < 1000001). Input is terminated by a line containing a single zero.

This line should not be processed.

Output

For each line of input produce one line of output. This line contains number of pair of non-

consecutive fractions
i

i

n

m
 and

j

j

n

m
, (j - i > 1) in Farey Series Fn, such that 𝑚𝑗𝑛𝑖 − 𝑚𝑖𝑛𝑗 = 1

.

Sample Input Output for Sample Input

1

4

0

0

5

Problem Setter: Shahriar Manzoor

Special Thanks: Syed Shahriar Manjur

D Ultimate Mango Challenge

Rajshahi is one of the oldest cities in Bangladesh. Its land is mother of one of the most delicious
fruits in the world, Mango. You can find
mango in various parts of the world, but
the mango from Rajshahi is famous
worldwide for its unique and delicious taste.
People are so obsessed with these mangoes

that sometimes they hear “রাজশাহীর আম
আছে" in japanese shop (well… they actually

say “irasshaimase” which means welcome).
The variety of mangoes that grows around
Rajshahi is truly overwhelming. As an
outsider, it might be really surprising to see
people of Rajshahi eating mangoes (or food
prepared from mangoes) three times a day.
I was surprised first time to see such
enthusiasm. But I was not ready to face
what was coming next.

One of my relative from Rajshahi challenged me to eat mangoes like they do. When I tried to get

out of it I was mocked in various ways, and was called a coward. So I decided to give it a shot.

But as a CSE major, I wanted to know beforehand whether I am going to pass or fail the

challenge. It will be really easy to find out using a program. But I can’t use laptop keyboard and

only you can help me out from this big trouble.

Input

First line contains T (T<10), number of test cases. Each case starts with N (0<N<10), different

types of mangoes and L (0<=L<=20), my limit of eating maximum number of mangoes at one

meal. Next line contains N integers, all of them will be less than 10. Each of these integers

indicates number of mangoes of each kind in the plate in front of me. Next line will contain N

integers, all of them less than 10. Each of these integers indicates my limit of eating a particular

type of mango. I need to finish every mango in the plate to win the challenge. Total number of

mangoes I eat cannot exceed my limit L. Also number of a particular type mangoes eaten should

also not exceed the limit for that particular type.

Output

For each case, output “Case X:” where X is the case number. After that print Yes or No based

on whether you can win the challenge or not.

Sample Input Output for Sample Input

3
3 5
1 2 3
1 3 3
3 6
1 2 3
1 3 2
3 6
1 2 3
3 3 3

Case 1: No
Case 2: No
Case 3: Yes

Problem Setter: Hasnain Heickal

Special Thanks: Md. Shiplu Hawlader

E Train Station

Not that long ago a new railway station was built at Rajshahi, a nice city in Bangladesh. The old

one was very small in size. After searching for a while I got a picture of the old station. As you

can see the station was mostly open ended in both sides back then. Current railway station is

mostly closed in the inner end. In closed end case, the advantage is, we always know where the

train will stop and we also know the location of the exit of the train station. So if you want to

optimize your time, you can cleverly choose the train bogie and thus exit the whole station at the

earliest possible time.

However the situation is not that simple for open

ended train stations. The bogie may stop at

anywhere at the line. Well, not exactly anywhere,

but if we travel for several days we kind of know

which bogie usually stops near the exit. Under this

circumstances, we would like to compute

expected amount of time one requires to exit the

station.

For our convenience let us assume the width of a train bogie is negligible and the train line is y-

axis. Let the exit of the train station be (x, 0). After traveling several days I know which bogie I

should ride. Suppose the length of that bogie is d. We also know that the train randomly stops in

the station in such a way that the entire bogie is completely within (0, y1) and (0, y2) [y1 - y2

>= d]. A bogie has 2 exits, one at the very beginning and another at very end. My sitting

location is uniformly random within the bogie. However, when the train stops I look outside

through the window and decide which end of the bogie I should exit through to get out of the

station at the earliest possible time. If I can walk 1 unit distance per second, what is the expected

time for me to get out of the station?

Input

First line of the input will be the number of test cases T (≤ 1,000). Hence T test cases follow.

Each case consists of a single line with four integers: x, y1, y2, d [-100 ≤ y1, y2 ≤ 100, 0 < d, x

≤ 100, y1 - y2 >= d].

Output

For each test case output: “Case t: ans” where t is the case number and ans is the expected

amount of time. Precision error of 10^-4 will be accepted.

Sample Input Output for Sample Input

3

1 1 -1 2

1 1 -1 1

1 10 8 1

Case 1: 1.914214

Case 2: 1.382597

Case 3: 9.058678

Problem Setter: Md. Mahbubul Hasan

Special Thanks: Zobayer Hasan

F Tree Weights

A rooted tree with N nodes is given. Nodes are labeled 1 to N, 1 being the root of the tree. Each

of the leaves of this tree has a value assigned to it, which is zero at the beginning. The value for

each internal node U is calculated as the sum of the values of all the nodes in the sub-tree rooted

at U. An internal node is a node, which has at least one child node.

You will be given two kinds of operations:

Type 1: given U, find the value of node U.

Type 2: given U and X, increase the value of the leaf U with X.

Input

First line starts with T (0<T≤10), number of test cases. Each of the case starts with N

(0<N≤10^5), number of nodes in the tree. Next there will be N-1 lines each containing two

integers U and V, indicating an edge between U and V. Next there will be Q (0<Q≤10^5),

number of operations. Next Q line will contain firstly TP (1 or 2), the type of the operation.

Then based on the operation type, there will be one or two integers, U or U and X (1≤U≤N,

|X|≤10^9). In case of TP = 2, U will always be a leaf node.

Output

For each case, print case number. Then for each operation of type 1, print the answer in a

separate line. As value of the nodes can get huge, print the answer modulo 1,000,000,007. See

sample I/O for more clarification.

Sample Input Output for Sample Input
1

4

1 2

1 3

3 4

6

2 2 1

1 1

1 3

2 4 3

1 1

1 3

Case 1:

1

0

7

3

Problem Setter: Hasnain Heickal

Special Thanks: Muhammad Ridowan

G Defense Plan

You are playing a game where it is possible to place defensive towers on the map. They are not

like any other defense towers though. They will only protect the area within the convex hull

formed by them. However, you cannot place any number of towers, because that will be really

unfair. The towers can only be placed on a tower mount. There are several tower mount

throughout the map, only one tower can be placed on a tower mount. If you can only place

exactly N towers out of P tower mount locations, where N ≤ P, what is the maximum area that

can be covered by the towers?

Input

There will be T (T ≤ 100) test cases. Each case contains two integers P and N (3 ≤ N ≤ P ≤

100) as described in the statement. Then there will be P pairs of integers (x, y) denoting the

coordinates of tower mounts, 0 ≤ x, y ≤ 1000. Test cases will be separated by blank lines. Note

that, 50% of the test cases are randomly generated.

Output

For each case, print the test case number starting with 1, and then a real number denoting the

maximum possible area. The output area should be rounded to three decimal places. It is

guaranteed the area will be positive.

Sample Input Output for Sample Input

3

7 4

2 2

1 5

6 1

5 5

3 7

7 6

9 4

3 3

0 0

1 1

0 1

4 4

0 1000

1000 0

1000 1000

0 0

Case 1: 24.000

Case 2: 0.500

Case 3: 1000000.000

Problem Setter: Zobayer Hasan

Special Thanks: Md. Shiplu Hawlader

H VIP Treatment
For any government project, VIPs are always a problem. You can’t expect a high profile VIP

person to wait for a month for some job to be done like a normal people. This is a big problem

for government software projects as you have to create alternate ways to bypass business logic

and finish some job early. Now you are working on some government software project and you

have to manage some job requests, processing and management as well as have to do VIP

treatment. In this problem we will solve a sub-problem of it, assigning the jobs to worker.

For the software there are M kinds of jobs, numbered from 1 to M and N workers numbered

from 1 to N. As the jobs are mostly similar, so the time needed for a particular worker to do any

kind of job request is same. Different worker may need different amount of time. Now for each

j-th (1≤j≤M) kind of job, your software have to consider 3 things,

 Number of VIP requests vj for this kind of job.

 Number of regular requests rj for this kind of job.

 A non-empty list of workers wrj who can do this kind of job.

All the VIP job request have to be processed. But the management also wants to process at least

K (0 ≤ K ≤ ∑ 𝑟𝑗

𝑀

𝑗=1
) total regular job requests.

The software have to assign this requests to workers and have to do it in a way that total time

needed is minimized. Now a worker numbered i (1≤i≤N) can complete any kind of job request

in Wi time but can’t do more than one job at a time. After the requested job is finished, he can

do another job again, which will cost him another Wi time. So if any worker numbered i does total

Ti jobs, it would take him Ti*Wi time to finish.

The total time needed to finish the project is the maximum time needed by any worker

(Maximum Ti*Wi for all i such that 1≤i≤N). Your job for this problem is to make such an

arrangement that the total time needed is minimized.

Input

The first line of input contains a positive integer number TC (TC≤200), number of test case.

Then TC test cases follow.

There will be blank line before each test case.

First line of each test case will contain three space separated integers M (1≤M≤50), N

(1≤N≤50) and K. Next line will contain N space separated integer numbers, i-th of those

numbers will be Wi, time needed by worker i to do a single job (1≤Wi≤100). Each of the next M

lines contains description of a job, where the first three integers of the j-th line are

vj(0≤vj≤1,000,000) number of VIP job requests of kind j, rj(0≤rj≤1,000,000) number of

regular job requests of kind j and nj(1≤nj≤N) number of workers who can do j-th kind of job.

Then nj integers follow. The k-th of the next nj integers is wrjk (1≤ wrjk≤N), means worker

numbered wrjk can do j-th kind of job.

Output

For each test case print a line in “Case I: T” format where I is the case number and T is the

minimum time required for doing all VIP requests and at least K regular job requests.

Sample Input Output for Sample Input

3

3 3 10

2 4 8

2 3 1 1

2 3 1 2

2 4 1 3

2 1 4

2

2 3 1 1

3 2 1 1

2 2 4

1 2

2 3 2 1 2

3 2 2 1 2

Case 1: 48

Case 2: 18

Case 3: 6

Explanation for Sample Case

In the first case, there are 3+3+4=10 regular job requests and 10 VIP job requests. Also for each

type of job, only one worker can do it. So

The 1st worker get 2+3=5 jobs and with 2 unit time per job he needs 5*2=10 unit of time.

The 2nd worker get 2+3=5 jobs and with 4 unit time per job he needs 5*4=20 unit of time.

The 3rd worker get 2+4=6 jobs and with 8 unit time per job he needs 6*8=48 unit of time.

As they all can work independently, total time needed is 48.

In the second case, there in only one worker and he got total 2+3=5 VIP job requests and 4

regular job requests. So He need (5+4)*2=18 unit of time.

In the third case, worker 1 will do 6 jobs with 6*1=6 unit of time and worker 2 will do 3 jobs

with 3*2=6 unit of time. So to do 9 jobs, total time needed is 6.

Problem Setter: Muhammad Ridowan

Special Thanks: Md. Shiplu Hawlader

I Jumping Frogs

At time 0, R red frogs and G green frogs are sitting on a straight line. All the positions of the

frogs are non-negative integer numbers. Every second, all the frogs jump. Each of the frogs has

its own velocity, i.e., every second the i-th frog jumps Vi units to its left or right depending on

the color. Every red frog jumps to its right, and every green frog jumps to its left.

The line is divided into N + 1 contiguous segment. The left end of the first segment is always 0

and the right end of the N+1st segment is 10^9. The segments are denoted by a sequence of N

positive integers. For example, if N = 1 and the sequence has 1 integer number 10, then there

are two segments, one is from 0 to 10 and another is from 10 to 10^9, both inclusive.

You are given the initial positions of all the R + G frogs and a sequence of positive integers

describing the segments. Find the minimum time it will take for all the frogs to reach a single

segment. A frog is said to be on a segment if and only if it’s sitting on some points inside the

segment (including the endpoints). Please note that a frog is not said to be inside a segment

when it’s jumping.

Please note that, when a frog is on any of the N intermediate boundary points, they can be

considered to be part of either the left or the right segment.

Input

Input starts with a single positive integer, T ≤ 10, on a single line, denoting the number of test

cases.

The first line of each test cases will be a blank line. Next line will contain three positive integers
R, G and N (1 <= R, G <= 100,000, 1 <= N <=100,000).

Next five lines will be as follows:

1. R non negative integers, where the i-th integer represents the position of the i-th red

frog.

2. R non negative integers, where the i-th integer represents the velocity of the i-th red

frog.

3. G non negative integers, where the i-th integer represents the position of the i-th green

frog.

4. G non negative integers, where the i-th integer represents the velocity of the i-th green

frog.

5. A sequence of N positive integers describing the segments. All the numbers are greater

than 0 and are less than 10^9

Note that, every frogs’ position and velocities are between 0 and 10^9, inclusive.

Please note that the input file is around 4 MB, use faster input/output routine.(i.e. scanf/printf

instead of cin/cout for c++)

Output

For every case print the output in format, “Case X: Y”, where X is the number of test case,

starting from 1 and Y is the minimum time it takes for all the frogs to reach a single segment. If

it’s impossible for all the frogs to reach a single segment, then Y should be -1.

Sample Input Output for Sample Input

2

1 1 1

10

10000

20

10000

1000000

2 2 1

1 2

99 100

1000 1001

100 200

100

Case 1: 0

Case 2: 1

Problem Setter: Muhammed Hedayet

Special Thanks: Hasnain Heickal

J Just Some Permutation 5

Given N and K, find the lexicographically K-th (1-indexed) smallest permutation P1, P2

… PN of the first N positive integers (1, 2 … N), such that the adjacent numbers are

relatively prime [GCD(Pi, Pi+1) = 1, for 1≤i<N] in the permutation. A permutation of N

numbers A1, A2 … AN is lexicographically smaller than another permutation B1, B2 …

BN if Ai < Bi for some i and Aj = Bj for all j<i.

Input

First line of the input contains an integer T (≤20), which is the number of test cases. Each of

the next T lines contain two space separated integers N (1≤N≤28) and K (1≤K≤10^18).

Output

For each test case output the case number and then N space separated integers which is the

lexicographically K-th smallest permutation of the first N positive integer numbers, such that

adjacent numbers in the permutation are relatively prime. If there are less than K such

permutations then output ‘-1’. See sample input output for exact formatting.

Sample Input Output for Sample Input

3

3 3

4 2

4 20

Case 1: 2 1 3

Case 2: 1 4 3 2

Case 3: -1

Problem Setter: Tasnim Imran Sunny & Md. Shiplu Hawlader

Special Thanks: Syed Shahriar Manjur

K Toll Management (III)

Government of Byteland is not happy with their yearly money collection and revenue this

year. They have imposed several taxes and VATs here and there. This time the

Government is going to increase the toll on highways of the country. But people of

Byteland are very much dissatisfied with the Government’s taxation and revenue

generation policies. So Government is rethinking their policies.

There are N cities and M highways in Byteland. Each highway directly connects two

different cities. Government has fixed a toll for each highway and whoever passes the

highway have to pay the toll. Government wants to increase the toll from next month.

But as they don’t want to dissatisfy the people of Byteland anymore, they came up with a

unique idea. They will change (increase or decrease) the toll of some highway such that

the shortest path cost from the capital to any other city will remain same as now. So they

want to know two information for each i-th highway:

1) Ai: What is the maximum amount of toll they can increase without affecting the

shortest path cost from capital city to all other cities?

2) Bi: What is the maximum amount of toll they can decrease without affecting the

shortest path cost from capital city to all other cities?

In other words, if Ci is the current toll of highway i, then if the Government updates the

toll of the highway to Ci + Ai (or Ci – Bi), the shortest path cost from capital city to city

1, 2… N does not change at all. Note that the Government is not imposing the new toll

right away, they just want to estimate the A and B values of each highway. So when

estimating the A and B values of a highway, there is no new toll imposed on any highway.

As you are the great programmer of Byteland, you are going to help the Government of

Byteland to find Ai and Bi values for each i-th highway (for 1≤i≤M).

Input

First line of the input contains a positive integer T (T<10), denoting the number of test cases.

First line of each test contains two integer numbers N and M (2≤N≤10,000, 1≤M≤100,000),

denoting the number of city and number of highway respectively. Each of the next M lines

contains the description of a highway, where the i-th line contains three integer numbers Ui, Vi

and Ci (1≤Ui, Vi ≤ N, Ui != Vi, 0≤Ci≤1,000), that means there is a highway from city Ui to

city Vi and the toll of the highway is Ci. All the highways are directional, that means if there is a

highway from city x to city y, not necessarily there exist a highway from city y to x, unless it is

mentioned explicitly. Note that the city numbered 1 is the capital city of Byteland and every

other city (2 to N), will be reachable from the capital city.

Warning: Large I/O file, user faster input output.

Output

For each test case, output the test case number and a single integer S, where

S = ∑ 𝑖 ∗ 𝐴𝑖
𝑀
𝑖=1 + 𝑖2 ∗ 𝐵𝑖

If the value of Ai or Bi is infinite then replace the value with -1. The answer will be such that it

will fit into 64-bit signed integer.

Sample Input Output for Sample Input

2

4 4

1 2 5

1 3 5

2 4 5

3 4 5

4 4

1 2 5

1 3 5

2 4 4

3 4 5

Case 1: -7

Case 2: 12

Explanation of the sample test cases:

For the first test case, (A1, B1) = (0 0), (A2, B2) = (0 0), (A3, B3) = (-1 0) and (A4, B4) = (-1 0).

For the second test case, (A1, B1) = (0 0), (A2, B2) = (0 0), (A3, B3) = (0 0) and (A4, B4) = (-1, 1).

Problem Setter: Md. Shiplu Hawlader

Special Thanks: Monirul Hasan

