## Just Some Permutation 5

Given $\mathbf{N}$ and $\mathbf{K}$, find the lexicographically $\mathbf{K}$-th (1-indexed) smallest permutation $\mathbf{P}_{1}, \mathbf{P}_{2}$ $\ldots \mathbf{P}_{\mathbf{N}}$ of the first $\mathbf{N}$ positive integers ( $\mathbf{1}, \mathbf{2} \ldots \mathbf{N}$ ), such that the adjacent numbers are relatively prime $\left[\mathbf{G C D}\left(\mathbf{P}_{\mathbf{i}}, \mathbf{P}_{\mathbf{i}+1}\right)=\mathbf{1}\right.$, for $\left.\mathbf{1} \leq \mathbf{i}<\mathbf{N}\right]$ in the permutation. A permutation of $\mathbf{N}$ numbers $\mathbf{A}_{1}, \mathbf{A}_{2} \ldots \mathbf{A}_{\mathbf{N}}$ is lexicographically smaller than another permutation $\mathbf{B}_{1}, \mathbf{B}_{2} \ldots$ $\mathbf{B}_{\mathbf{N}}$ if $\mathbf{A}_{\mathbf{i}}<\mathbf{B}_{\mathbf{i}}$ for some $\mathbf{i}$ and $\mathbf{A}_{\mathbf{j}}=\mathbf{B}_{\mathfrak{j}}$ for all $\mathbf{j}<\mathbf{i}$.

## Input

First line of the input contains an integer $\mathbf{T}(\mathbf{2 0})$, which is the number of test cases. Each of the next $\mathbf{T}$ lines contain two space separated integers $\mathbf{N}(1 \leq N \leq 28)$ and $\mathbf{K}\left(1 \leq K \leq 10^{\wedge} 18\right)$.

## Output

For each test case output the case number and then $\mathbf{N}$ space separated integers which is the lexicographically K-th smallest permutation of the first $\mathbf{N}$ positive integer numbers, such that adjacent numbers in the permutation are relatively prime. If there are less than $\mathbf{K}$ such permutations then output ' -1 '. See sample input output for exact formatting.

|  | Sample Input | Output for Sample Input |  |  |
| :--- | :--- | :--- | :--- | :---: |
| 3 |  | Case | $1:$ |  |
| 3 | 2 | 1 | 3 |  |
| 3 | 3 | Case | $2:$ |  |
| 4 | 2 | 4 | 3 |  |$]$

Problem Setter: Tasnim Imran Sunny \& Md. Shiplu Hawlader
Special Thanks: Syed Shahriar Manjur

