F

Tree Weights

A rooted tree with \mathbf{N} nodes is given. Nodes are labeled 1 to $\mathbf{N}, 1$ being the root of the tree. Each of the leaves of this tree has a value assigned to it, which is zero at the beginning. The value for each internal node \mathbf{U} is calculated as the sum of the values of all the nodes in the sub-tree rooted at \mathbf{U}. An internal node is a node, which has at least one child node.

You will be given two kinds of operations:
Type 1: given \mathbf{U}, find the value of node \mathbf{U}.
Type 2: given \mathbf{U} and \mathbf{X}, increase the value of the leaf \mathbf{U} with \mathbf{X}.

Input

First line starts with $\mathbf{T}(0<\mathbf{T} \leq 10)$, number of test cases. Each of the case starts with \mathbf{N} $\left(0<\mathbf{N} \leq 10^{\wedge} 5\right)$, number of nodes in the tree. Next there will be $\mathbf{N}-1$ lines each containing two integers \mathbf{U} and \mathbf{V}, indicating an edge between \mathbf{U} and \mathbf{V}. Next there will be $\mathbf{Q}\left(\mathbf{0}<\mathbf{Q} \leq 10^{\wedge} 5\right)$, number of operations. Next \mathbf{Q} line will contain firstly TP (1 or 2), the type of the operation. Then based on the operation type, there will be one or two integers, \mathbf{U} or \mathbf{U} and $\mathbf{X}(1 \leq \mathbf{U} \leq \mathbf{N}$, $|\mathbf{X}| \leq 10^{\wedge} 9$). In case of $\mathbf{T P}=\mathbf{2}, \mathrm{U}$ will always be a leaf node.

Output

For each case, print case number. Then for each operation of type 1, print the answer in a separate line. As value of the nodes can get huge, print the answer modulo $\mathbf{1 , 0 0 0 , 0 0 0 , 0 0 7}$. See sample I/O for more clarification.

	Sample Input	Output for Sample Input
1		Case 1:
4		1
1	2	0
1	3	7
3	4	3
6		
2	2	1
1	1	
1	3	
2	4	3
1	1	
1	3	

Problem Setter: Hasnain Heickal
Special Thanks: Muhammad Ridowan

