I: Interstellar Travel
Source file name: interstellar.c, interstellar.cpp, or interstellar.java

The Agency for Cross-Constellation and Interstellar Space Travel (ACIS) is ready to offer its clients space travel among several planets across the universe.

ACIS offers a list of flight options consisting of an origin planet, a destination planet, a cost, and a duration. One of the "killer" features ACIS will offer to its clients is that of being able to plan a trip between two planets under the constraint of a maximum number of stops. That is, given a natural number n, ACIS would like to offer each client the cheapest possible trip from an origin planet to a destination planet with at most n stops. Since interstellar in-flight sleep is not pleasant, it is also important to minimize the amount of time spent in a trip.

Can you help ACIS in finding an efficient algorithm for such a task?

Input

The input consists of several test cases. Each test case begins with a line with three blankseparated integers p, f, and $q(1 \leq p \leq 300,0 \leq f \leq 5000$, and $0 \leq q \leq 1000)$, indicating the number of planets, flights, and queries, respectively. The next p lines each contains a planet name s $(1 \leq|s| \leq 30)$. The next f lines each contains two planet names and two integers s_{o}, s_{d}, c, and t (separated by a blank), denoting that there is a direct flight from s_{o} to $s_{d} \operatorname{costing} c$ dollars $\left(0 \leq c \leq 10^{5}\right)$ with a duration of t units of time $\left(0 \leq t \leq 10^{5}\right)$. The next line contains a planet name s_{i} indicating the initial planet for the trip. The next q lines each contains a query with a destination planet name s_{f} for the trip and a natural number n, both separated by a blank $(0 \leq n \leq 300)$. You can assume that planet names consist only of alphabetic characters, and that s_{o}, s_{d}, s_{i}, and s_{f} are in the list of p planet names.

The input must be read from standard input.

Output

For each query s_{i}, s_{f}, n output two blank-separated integers indicating the minimum cost and the corresponding minimum travel time for this cost of an interstellar trip from s_{i} to s_{f} with at most n stops. If this is not possible, then print two blank-separated asterisks ('*').
Print a line with a single period ('.') between consecutive test cases.
The output must be written to standard output.

Sample Input	Sample Output
231	23
Earth	
Mars	00
Earth Mars 23	1078
Earth Mars 41	1078
Earth Earth 32	* *
Earth	1179
Mars 0	
335	1010
Tatooine	1010
Endor	1010
Geonosis	* *
Tatooine Endor 30015	2015
Endor Geonosis 1078	2550
Geonosis Tatooine 11	2540
Endor	* *
Endor 0	
Geonosis 0	
Geonosis 4	
Tatooine 0	
Tatooine 1	
558	
Earth	
Kaishin	
Namek	
Vegeta	
NewNamek	
Earth Kaishin 1010	
Kaishin Namek 105	
Kaishin Vegeta 1530	
Earth Vegeta 2550	
NewNamek Earth 1001	
Earth	
Kaishin 0	
Kaishin 1	
Kaishin 2	
Namek 0	
Namek 1	
Vegeta 0	
Vegeta 1	
NewNamek 5	

