Problem L

Lottery

The lottery BWS is played annually. In this lottery N people bet choosing K numbers each. In a formal way, we can say that $B_{i j}$ is the j-th value bet by the i-th person. Then the organizers choose K positive integers. The chosen numbers are called $W_{1}, W_{2}, \ldots, W_{K}$.

The winners are calculated as followed:

- A non-empty subset is chosen randomly from the N participants; in other words, some participants are luckily chosen.
- For each person in this subset the value S_{1} is calculated, the sum of all the first numbers bet by them, that is, the sum of the $B_{i 1}$ where i is the index of each chosen person. In the same way the values S_{2}, \ldots, S_{K} are calculated.
- A parity test between W_{j} and S_{j} is performed; in other words, it is verified if the parity (if a number is pair or odd) matches between W_{1} and S_{1}, W_{2} and S_{2}, and so on until W_{K} and S_{K}.
- If all parities match, then the people in this subset are considered the winners!

The organizers want to know: is it possible to pick the numbers $W_{1}, W_{2}, \ldots, W_{K}$ so that there is no subset of winning participants?

Input

The input contains several test cases. The first line of a test case contains the numbers $N(1 \leq$ $N \leq 30000)$ and $K(3 \leq K \leq 50)$, which represent the number of participants and the quantity of numbers bet by each person, respectively. The participants bet with integer numbers between 1 and 10^{9}, inclusive. Each of the next N lines contains K numbers representing the bet of each person, one person per line.

Output

For each test case in the input you must output a single line, containing one letter: ' S ' in case it is possible or ' N ' otherwise.

Examples

Input	Output	
2	3	
1	2	3
5	6	7
3	3	S
3	2	1
6	5	4
4	4	4
4	3	S
9	4	7
4	4	4
2	7	2
2	2	1

