	F	ion

Given two positive integers n, m, find out $\mathrm{n}!/ \mathrm{m}!$, where $\mathrm{n}!=1 * 2 * 3 * \ldots * \mathrm{n}(\mathrm{n}>=1)$.
For example, if $\mathrm{n}=6, \mathrm{~m}=3,6!/ 3!=720 / 6=120$.
Easy, right? Now let's do the reverse: given $\mathrm{k}=\mathrm{n}!/ \mathrm{m}$!, find out the pair $(\mathrm{n}, \mathrm{m})(\mathrm{n}>\mathrm{m}>=1)$.
If there is more than one solution, n should be as small as possible. For example, if $k=120$, the answer should be $n=5$ and $m=1$, not $n=6$ and $m=3$, because $5!/ 1!=6!/ 3!=120$, and $5<6$.

Input

There will be at most 100 test cases. Each test case contains one integer $\mathrm{k}\left(1<=\mathrm{k}<=10^{9}\right)$.

Output

For each test case, print two integers n and m. If there is no solution, print "Impossible". If there is more than one solution, n should be as small as possible.

Sample Input

Output for Sample Input

120
1
210

