Problem I: Armstrong Number

A number \mathbf{N} is an Armstrong number of order \mathbf{n} (\mathbf{n} being the number of digits) if abcd $\ldots=a^{n}+b^{n}+c^{n}+d^{n}+\ldots=N$
For example, 153 is an Armstrong number of order 3 because $1^{3}+5^{3}+3^{3}=1+125+27=153$.
Likewise, 54748 is an Armstrong number of order 5 because

$$
5^{5}+4^{5}+7^{5}+4^{5}+8^{5}=3125+1024+16807+1024+32768=54748 .
$$

In this problem you have to determine whether a given number is Armstrong number or not.

Input

The first line of input is an integer, \mathbf{T} that determines the number of test cases. Each of the next \mathbf{T} lines contain a positive integer \mathbf{N}, where $\mathbf{N} \leq \mathbf{1 0 0 0 0 0 0 0 0 0}$.

Output

For each line of input, there will be one line of output. If \mathbf{N} is an Armstrong number print "Armstrong", otherwise print "Not Armstrong" (without the quotes).

Sample Input	Output for Sample Input
$\mathbf{3}$	Armstrong
$\mathbf{1 5 3}$	Not Armstrong
2732	Armstrong
54748	

Problem Setter: Mohammed Shamsul Alam
Alternate Solution: Tanveer Ahsan

