IIUPC 2014

Problem F: Light Combat Aircraft

In graph theory, the **lowest common ancestor** (LCA) of two distinct nodes v and w in a rooted tree is the lowest (i.e. deepest) node that has both v and w as descendants, where we define each node to be a descendant of itself (so if v has a direct connection from w, w is the lowest common ancestor).

For example, on the above tree (depicted from case 1) LCA(3,5) = 1, LCA(7,10) = 5, LCA(6,5) = 5 etc.

In this problem, given a Forest, i.e. a disjoint union of rooted trees, you have to find out for each node \mathbf{u} how many distinct pair of nodes (v, w) exist such that $\mathbf{LCA}(\mathbf{v}, \mathbf{w})$ would be \mathbf{u} . You should assume that both (v, w) and (w, v) are same pair.

Input

First line of input file contains number of test cases, $T \le 100$ and T cases follow. Each case starts with an integer N ($1 \le N \le 10000$), number of nodes in the forest. Next line contains N integers, $p_1, p_2, \dots p_N$ ($0 \le p_i \le N$), where p_i is the parent of i^{th} ($1 \le i \le N$) node in a rooted tree of the forest, If $p_i = 0$ then node i is a root in rooted tree.

Output

For each case, print the forest number starting from 1 and number of LCA pair for each node (ordered by node number) separated by space. See the sample output for exact formatting.

Sample Input	Output for Sample Input
4	Forest#1: 29 1 0 0 9 5 0 1 0 0
10	Forest#2: 0 1 0
0 1 2 1 1 5 6 6 8 5	Forest#3: 5 1 0 0
3	Forest#4: 1 0 1 0
2 0 0	
4	
0 1 2 1	
4	
0 1 0 3	

Problem Setter: Prasanjit Barua Alternate Solution: Kayser Abdullah

Output Explanation

In case 2, in the given forest among the two trees rooted at 2 and 3, there is no pair for which LCA is 1 or 3. For pair (1, 2) LCA is 2. So, total pair for 2 is 1.

In case 3, for pair (1,2), (1,3), (1,4), (2,4), (3,4) LCA is 1. For only pair (2,3) LCA is 2. There is no pair for which LCA is 3 or 4.

Note: Dataset is huge, so use faster I/O methods.