\|IUPC 2014

Problem F: Light Combat Aircraft

In graph theory. the lowest common ancestor (LCA) of two distinct nodes \boldsymbol{v} and \boldsymbol{w} in a rooted tree is the lowest (i.e. deepest) node that has both \boldsymbol{v} and \boldsymbol{w} as descendants, where we define each node to be a descendant of itself (so if \boldsymbol{v} has a direct connection from $\boldsymbol{w}, \boldsymbol{w}$ is the lowest common ancestor).

For example, on the above tree (depicted from case 1) LCA(3,5) = 1, LCA(7,10) = 5, LCA(6,5) = 5 etc.

In this problem, given a Forest, i.e. a disjoint union of rooted trees, you have to find out for each node \mathbf{u} how many distinct pair of nodes ($v, w)$ exist such that $\mathbf{L C A}(\mathbf{v}, \mathbf{w})$ would be \mathbf{u}. You should assume that both (v, w) and (w, v) are same pair.

Input

First line of input file contains number of test cases, $\mathbf{T} \leq \mathbf{1 0 0}$ and \mathbf{T} cases follow. Each case starts with an integer $\mathbf{N}(\mathbf{1} \leq \mathbf{N} \leq \mathbf{1 0 0 0 0})$, number of nodes in the forest. Next line contains \mathbf{N} integers, $\mathbf{p}_{\mathbf{1}}, \mathbf{p}_{2}, \ldots \mathbf{p}_{\mathbf{N}}\left(\mathbf{0} \leq \mathbf{p}_{\mathbf{i}} \leq \mathbf{N}\right)$, where $\mathbf{p}_{\mathbf{i}}$ is the parent of $\mathbf{i}^{\text {th }}(\mathbf{1} \leq \mathbf{i} \leq \mathbf{N})$ node in a rooted tree of the forest, If $\mathbf{p}_{\mathbf{i}}=\mathbf{0}$ then node \mathbf{i} is a root in rooted tree.

Output

For each case, print the forest number starting from $\mathbf{1}$ and number of LCA pair for each node (ordered by node number) separated by space. See the sample output for exact formatting.

Sample Input	Output for Sample Input
4	Forest\#1: 29100950100
10	Forest\#2: 010
0121156685	Forest\#3: 5100
3	Forest\#4: 1010
200	
4	
0121	
4	
0103	

Problem Setter: Prasanjit Barua
Alternate Solution: Kayser Abdullah

Output Explanation

In case 2, in the given forest among the two trees rooted at $\mathbf{2}$ and $\mathbf{3}$, there is no pair for which LCA is $\mathbf{1}$ or 3 . For pair $(1,2)$ LCA is 2 . So, total pair for $\mathbf{2}$ is $\mathbf{1}$.
In case 3 , for pair $(\mathbf{1}, \mathbf{2}),(\mathbf{1}, 3),(1,4),(2,4),(3,4)$ LCA is $\mathbf{1}$. For only pair $(\mathbf{2}, \mathbf{3})$ LCA is $\mathbf{2}$. There is no pair for which LCA is $\mathbf{3}$ or $\mathbf{4}$.

Note: Dataset is huge, so use faster I/O methods.

