

ACM ICPC 2014

Contest : REGIONAL DEPARTMENT OF COMPUTER ENGINEERING FACULTY OF ENGINEERING - CHULALONGKORN UNIVERSITY NOVEMBER 15, 2014

F	Zeroes	
	INPUT	STANDARD INPUT
	OUTPUT	STANDARD OUTPUT

Factorial n is written as n! and n!=1*2*3...*(n-1)*n. For example 2! = 1*2 = 2, 3! = 1*2*3 = 6, 5! = 120, 10! = 3,628,800 etc. The function fzero(n) denotes the number of trailing zeroes in n! in decimal number system. For example fzero(2) = 0, fzero(5) = 1, fzero(10) = 2. Given the domain of the input parameter v of fzero(v) function, you will have to find out how many different values of fzero() are there within this range.

Input

The input file contains at most 50001 lines of inputs. Each line contains two positive integers **low** and **high** ($0 < \mathbf{low} \le \mathbf{high} \le 9*10^{18}$). Input is terminated by a line containing two zeroes.

Output

For each line of input produce one line of output. This line contains an integer D, which denotes how many different values the function fzero(v) can have if (low $\leq v \leq$ high).

Note

Illustration for Sample input 1: as 1! = 1, 2! = 2, 3! = 6, 4! = 24, 5! = 120, 6! = 720, 7! = 5,040, 8! = 40,320, 9! = 362,880, 10! = 3,628,800, so fzero(1) = 0, fzero(2) = 0, fzero(3) = 0, fzero(4) = 0, fzero(5) = 1, fzero(6) = 1, fzero(7) = 1, fzero(8) = 1, fzero(9) = 1 and fzero(10) = 2. So in this range (1 to 10) there are three different values of fzero(v) => 0, 1 and 2.

Example

Input	Output
1 10 1 3 0 0	3 1