

ACM ICPC 2014

Contest : REGIONAL DEPARTMENT OF COMPUTER ENGINEERING FACULTY OF ENGINEERING - CHULALONGKORN UNIVERSITY **NOVEMBER 15, 2014**

Combination

INPUT	STANDARD INPUT
OUTPUT	STANDARD OUTPUT

The number of ways in which **r** objects can be chosen from **n** different objects can be found using the formula $\binom{n}{r} = \frac{n!}{r!(n-r)!}$. For example $\binom{5}{3} = 10$, $\binom{10}{0} = 1$, $\binom{15}{14} = 15$ etc. Now if n varies from low to high and r varies from 0 to n, then you have to find out how many values of are odd. In other words you will have to find out the value of $\sum_{n=low}^{high} \sum_{r=0}^{n} {n \choose r} \mod 2$, here **mod** is the standard modulus or reminder operation.

Input

The input file contains at most 50,000 lines of inputs. Each line contains two positive integers low and high ($0 \le low \le high \le 16*10^{11}$). Input is terminated by a line containing two zeroes.

Output

For each line of input, produce one line of output. This line contains an integer **D** which prints the desired value. You can safely assume that this output will fit in a 64-bit unsigned integer.

Note

Illustration for Sample input 1:
$$\binom{2}{0} = 1, \binom{2}{1} = 2, \binom{2}{2} = 1, \binom{3}{0} = 1, \binom{3}{1} = 3, \binom{3}{2} = 3, \binom{3}{3} = 1$$
, and of these seven values six (6) are odd

and of these seven values, six (6) are odd.

Example

Input	Output
2 3 10 20 100 200 0 0	6 70 2510