	ACM ICPC 2014 Contest ：REGIONAL DEPARTMENT OF COMPUTER ENGINEERING FACULTY OF ENGINEERING－CHULALONGKORN UNIVERSITY NOVEMBER 15， 2014	2CM $\begin{aligned} & \text { International Collegiate } \\ & \text { Programming Contest }\end{aligned}$部量諲 event

The number of ways in which r objects can be chosen from n different objects can be found using the formula $\binom{n}{r}=\frac{n!}{r!(n-r)!}$ ．For example $\binom{5}{3}=10,\binom{10}{0}=1, \quad\binom{15}{14}=15$ etc．Now if n varies from low to high and r varies from 0 to n ，then you have to find out how many values of $\binom{n}{r}$ are odd．In other words you will have to find out the value of $\sum_{n=l o w}^{\text {nigh }} \sum_{r=0}^{n}\binom{n}{r} \bmod 2$ ，here \bmod is the standard modulus or reminder operation．

Input
The input file contains at most 50，000 lines of inputs．Each line contains two positive integers low and high（ $0 \leq$ low \leq high $\leq 16^{*} 10^{11}$ ）．Input is terminated by a line containing two zeroes．

Output

For each line of input，produce one line of output．This line contains an integer D which prints the desired value．You can safely assume that this output will fit in a 64－bit unsigned integer．

Note

Illustration for Sample input 1：$\binom{2}{0}=1,\binom{2}{1}=2,\binom{2}{2}=1,\binom{3}{0}=1,\binom{3}{1}=3,\binom{3}{2}=3,\binom{3}{3}=1$, and of these seven values，six（6）are odd．

Example

	Input
23	Output
10220	70
100200	
00	2510

