

H

Hasmot Ali Professor

Professor Hasmot Ali loves to play string related problem. He assigns an easy lab task to his students. But they think it's a hard problem. I know you are very smart. You can help his students to solve this problem.

Given a string S, containing only lowercase English letters. There will be Q queries. Each line of query will contain two space separated strings, X and Y . For every query, your task is to calculate, how many distinct substrings of S which start with X and end with Y .
[Substring definition: A substring is any contiguous portion of a string. A substring may be empty, or the entire string]

For Example:
Given a string $S=$ "abab". There are total 8 distinct substrings. The list is below:
$[0]=$ "a"
[1] = "ab"
[2] = "aba"
[3] = "abab"
$[4]=$ "b"
$[5]=$ "ba"
[6] = "bab"
[7] =""
There are 3 queries:
1st Query: $\mathrm{X}=$ " a " and $\mathrm{Y}=$ " a ".
There are 2 distinct substring of S, satisfy the condition([0] = " a " and [2] ="aba").
2nd Query: $\mathrm{X}=$ " a " and $\mathrm{Y}=$ " b ".
There are 2 distinct substring of S, satisfy the condition. ($[1]=$ "ab" and $[3]=$ "abab" $)$.
3rd Query: $\mathrm{X}=$ "ba" and $\mathrm{Y}=$ "ab".
There is only one distinct substring satisfy the condition.([6] = "bab").

Input

Input start with an integer $\mathbf{T}(\leq 3)$, denoting the number of test cases.
Each case starts with a line containing string $\mathbf{S}(\mathbf{1} \leq \operatorname{length}(\mathbf{S}) \leq 1000)$. The next line contains an
integer $\mathbf{Q}(\mathbf{1} \leq \mathbf{Q} \leq 50000)$. Each of the next \mathbf{Q} line contains two strings $\mathbf{X}(1 \leq$ length $(\mathbf{X}) \leq$ 10) and $\mathbf{Y}(1 \leq$ length $(\mathrm{Y}) \leq 10)$.

Output

For each query you have to print the number of distinct substring of S, which are start with \mathbf{X} and end with \mathbf{Y}.

Sample Input	Output for Sample Input
1	Case $1:$
abab	2
3	2
a a	1
a b	
ba ab	

Problem setter: Forhad Ahmed, Special Thanks: Abu Obaida Opu

