

NATIONALICA FEST 2014

Chicken Lover

Abir loves to eat. Every time he visits a restaurant he wants to eat a chicken item. But chicken item may not be always available. In each day he visits **m** restaurants consecutively. Each restaurant (i = 1...m) can make \mathbf{n}_i different items (Number of Chicken item is exactly 1). But in a single day each restaurant prepares exactly \mathbf{k}_i items (chosen randomly from \mathbf{n}_i items).

Find expected number of chicken items Abir can eat in a single day.

Input

Input starts with an integer T (\leq 125), denoting the number of test

cases. Each case starts with a line containing an integer **m** ($1 \le m \le 10000$) which denotes number of visiting restaurants. Then in the following line there will be **m** pair of numbers n_i and k_i ($1 \le i \le m$, $1 \le n_i \le 20$, $1 \le k_i \le n_i$).

Output (Illustration in next page)

For each case, print expected number of chicken items Abir can eat in a single line in the format \mathbf{P}/\mathbf{Q} , where P and Q are relatively prime (i.e. no common factor > 1, between \mathbf{P} and \mathbf{Q}).

Sample Input	Output for Sample Input
3	Case 1: 1/1
1	Case 2: 1/1
1 1	Case 3: 2/3
2	
2 1 2 1	
1	
3 2	

Problem setter: Mohammad Hafiz Uddin, Special Thanks: F. A. R. Rahman Chowdhury

Explanation for Sample Case

In the first case, total no of item is one (one chicken item) and probability of getting 1 chicken item is one. So expected number of chicken item is 1.

In the second case, probability of getting 1 chicken item is $\frac{1}{2}$ and probability of getting 2 chicken items is $\frac{1}{4}$. So expected no of chicken item is $1 \ge \frac{1}{2} = \frac{1}{1}$.

