Problem H: Isosceles Triangles

An isosceles triangle is the one in which exactly two of its sides have the same length. A point in the plane is given by two coordinates, (x, y).

The following graph shows the idea.

Figure 1: Six points, enough to form a few triangles
Your task is to create an algorithm that answers, given N points, how many isosceles triangles do they form?

Input

The input consists of several test cases. For each test case, the first line has an integer N , the number of points. The next N lines contain two integers, X_{i} and Y_{i}, indicating the points in the plane.

$$
1 \leqslant N \leqslant 100 ;-100 \leqslant X_{i}, Y_{i} \leqslant 100
$$

Output

For each test case, print a single line with an integer, representing the total number of isosceles triangles formed by the N points.
To avoid rounding errors, make sure that in your program two lengths L_{a}, L_{b} are considered equal if $\left|\mathrm{L}_{\mathrm{a}}-\mathrm{L}_{\mathrm{b}}\right|<10^{-6}$.

Sample Input	Output for Sample Input
6	4
-4	1
-3	3
-2	1
-2	0
-1	1
-1	-1
3	0
-4	1
-2	1
-1	1

