Problem B: Sumthing

Has it ever happened to you that, having worked on a problem for a long time, it starts to pop up in your conscious mind when you least expect it? Just the other day I was singing that old song that goes "Something in the way she moves...", but before I knew it, I replaced part of the lyrics with "Sum-thing in the way she woos $m e . . . "$. The only explanation I have for this is that I had been working recently on a curious mathematical problem concerning sums. It goes something like this:
Consider a list A with n positive integers, $A_{1}, A_{2}, A_{3}, \ldots, A_{n}$. A function S is defined as follows, for $1 \leqslant k \leqslant n$:

$$
S(k)=2^{k-1} \sum_{i_{1}=1}^{n} \sum_{i_{2}=i_{1}+1}^{n} \sum_{i_{3}=i_{2}+1}^{n} \cdots \sum_{i_{k}=i_{k-1}+1}^{n} A_{i_{1}} A_{i_{2}} A_{i_{3}} \cdots A_{i_{k}}
$$

For example, if $A=(1,2,3)$, then the possible values of S are:

$$
\begin{aligned}
& \mathrm{S}(1)=1+2+3=6 \\
& \mathrm{~S}(2)=2 \cdot((1 \cdot 2)+(1 \cdot 3)+(2 \cdot 3))=2(2+3+6)=22 \\
& \mathrm{~S}(3)=4 \cdot(1 \cdot 2 \cdot 3)=4 \cdot 6=24
\end{aligned}
$$

What the problem asks is, given the list A, find the sum:

$$
\Phi=\sum_{k=1}^{n} S(k)
$$

Input

Input starts with an integer T, the number of test cases. Each test case starts with an integer n in the first line. The second line of each case contains n positive integers, separated by spaces, that form the set A.

$$
\mathrm{T} \leqslant 10 ; 1 \leqslant \mathfrak{n} \leqslant 10^{5} ; 1 \leqslant A_{i} \leqslant 10^{9} \text { for } 1 \leqslant \mathfrak{i} \leqslant \mathfrak{n}
$$

Output

For each test case, print the value of Φ, modulo $1000000009\left(10^{9}+9\right)$ on a single line.

Sample Input	Output for Sample Input
2	
3	
12	3
5	
2	5

