

Fermat's Last Theorem: no three positive integers a, b, and c can satisfy the equation $a^{n}+b^{n}=c^{n}$ for any integer value of n greater than two.

From the theorem, we know that $\mathrm{a}^{3}+\mathrm{b}^{3}=\mathrm{c}^{3}$ has no positive integer solution.
However, we can make a joke: find solutions of $\mathrm{a}^{3}+\mathrm{b}^{3}=\mathrm{c} 3$. For example $4^{3}+9^{3}=793$, so $a=4, b=9$, $\mathrm{c}=79$ is a solution.

Given two integers x and y, find the number of solutions where $x<=a, b, c<=y$.

Input

There will be at most 10 test cases. Each test case contains a single line: $x, y\left(1<=x<=y<=10^{8}\right)$.

Output

For each test case, print the number of solutions.

Sample Input

Output for Sample Input

1	10
1	20
123	456789

Case 1: 0
Case 2: 2
Case 3: 16

