

There is a funny car racing in a city with n junctions and m directed roads.
The funny part is: each road is open and closed periodically. Each road is associate with two integers (a, b), that means the road will be open for a seconds, then closed for b seconds, then open for a seconds... All these start from the beginning of the race. You must enter a road when it's open, and leave it before it's closed again.

Your goal is to drive from junction s and arrive at junction t as early as possible. Note that you can wait at a junction even if all its adjacent roads are closed.

Input

There will be at most 30 test cases. The first line of each case contains four integers $\mathrm{n}, \mathrm{m}, \mathrm{s}, \mathrm{t}$ $(1<=\mathrm{n}<=300,1<=\mathrm{m}<=50,000,1<=\mathrm{s}, \mathrm{t}<=\mathrm{n})$. Each of the next m lines contains five integers $\mathrm{u}, \mathrm{v}, \mathrm{a}, \mathrm{b}, \mathrm{t}$ $\left(1<=\mathrm{u}, \mathrm{v}<=\mathrm{n}, 1<=\mathrm{a}, \mathrm{b}, \mathrm{t}<=10^{5}\right)$, that means there is a road starting from junction u ending with junction v . It's open for a seconds, then closed for b seconds (and so on). The time needed to pass this road, by your car, is t. No road connects the same junction, but a pair of junctions could be connected by more than one road.

Output

For each test case, print the shortest time, in seconds. It's always possible to arrive at t from s .

Sample Input

3	2	1	3	
1	2	5	6	3
2	3	7	7	6
3	2	1	3	
1	2	5	6	3
2	3	9	5	6

Output for Sample Input

Case 1: 20
Case 2: 9

