Fantastic Network

An undirected weighted graph G = (V, E) is defined as a **Fantastic** network if it has the following properties:

- 1. The graph is connected.
- 2. The *degree* of any node is at most 6.
- 3. It may or may not contain *cycles*, but the *length* of any *cycle* (if exists) in this network will be 3. The nodes which are part of at least one *cycle* are called *fine* nodes.
- 4. The *degree* of any *fine* node can be at most 3.

Here, *cycle* is defined as a path $\langle v_0, v_1, ..., v_k \rangle$ in any graph such that the following statements hold:

- 1. $\mathbf{k} \ge 3$. (**k** is the *length* of the *cycle*)
- 2. $\mathbf{v_0} = \mathbf{v_k}$.
- 3. For each i ($0 \le i \le K$) v_i and v_{i+1} are connected by an edge.
- 4. $\mathbf{v_1}, \dots, \mathbf{v_k}$ are distinct.

An edge dominating set for an undirected graph G = (V, E) is a subset F of E such that every edge not included in F is adjacent to (i.e. shares a vertex with) some edge in F. The weight of an edge dominating set is the sum of the weights of all edges in that set. Given a Fantastic network with positive edge weights, you need to determine the weight of the minimum weight edge dominating set.

Input

First line of the input contains a positive integer T ($T \le 100$). The first line of each of the T cases contains two integers N ($2 \le N \le 5000$) and M ($1 \le M \le 2*N$), representing the number of nodes and edges, respectively, in a Fantastic network. Each of the following M lines contains 3 integers u_i , v_i , w_i , which means there is an edge from u_i to v_i ($1 \le u_i$, $v_i \le n$) with weight w_i ($1 \le w_i \le 10000$).

Output

For each case, print a line of the form Case $\langle x \rangle$: $\langle y \rangle$, where x is the case number and y is the weight of *minimum weight edge dominating set* of the given Fantastic network.

Sample Input	Output for Sample Input
2	Case 1: 1
3 2	Case 2: 2
1 2 1	
1 3 2	
7 6	
1 2 2	
1 3 1	
2 4 2	
2 5 1	
3 6 2	
3 7 1	

Problemsetter: Anindya Das

Special Thanks: Md. Shiplu Hawlader