
Problem E: Problem E: Problem E: Problem E:

Evaluating Logic Evaluating Logic Evaluating Logic Evaluating Logic

ExpressionsExpressionsExpressionsExpressions

Logic expressions occur

frequently in computer

programs. The elements of

logic expressions are:

• variables, which may have the values true or false

• unary and binary logic operators

• parentheses which may affect the order in which the operations are

carried out

Unary operators operate on one variable, whereas binary operators operate on

two variables. A common unary logic operator is NOT; some common binary

logic operators are AND, OR, XOR, NAND and NOR.

A logic operator can be defined by a 'truth table' (one-dimensional for unary

operators, two-dimensional for binary operators). For examples, see the diagram.

Note that false comes before true in the header across the top (for unary or the

right operand of binary operators), as well as on the left margin (for the left

operand of binary operators).

Two examples of logic expressions are:

1. (x AND (NOT(y NAND z)))

2. (x OR ((NOT y) XOR z))

For the purposes of this problem, the precise structure of a logic expression is

defined by the grammar:

<expression> = <variable> | (<expression> <operator> <expression>) | (<operator>

<expression>)

<variable> = <lowercase_letter>

<operator> = <uppercase_letter> | <operator> <uppercase_letter>

(Here the vertical bar '|' is pronounced 'or' and is used to define the grammar; it

does not actually show up in the expression.) <lowercase_letter> and

<uppercase_letter> have their usual meanings.

In some cases, it is possible to evaluate a logic expression even when not all of

the variables have been assigned values. Consider Example (1) above, and

suppose that y = false, but the values of x and z are not known. It can be seen

that the given expression evaluates to false regardless of the values of the

unassigned variables. On the other hand, suppose that, in the same Example (1),

x = true, y = true, and z is unknown. it is not possible to determine the value of

the expression without knowing the value of z.

Input FormatInput FormatInput FormatInput Format

The input will contain data for one or more test cases. For each test case, the

first line of input will contain two non-negative integers (not exceeding 100), the

number of unary operators and the number of binary operators to be considered

for that case. The first line will be followed by several lines that will name each

operator and define it in the form of a truth table, as described in the next two

paragraphs. The names of the operators do not exceed 20 characters and are

unique for each operator.

First, each unary operator will be defined in two lines of input: the first of these

two lines will contain the name of the operator; the second line will contain two

true / false entries that define the table for the unary operator, without the implied

column headers across the top.

After the unary operators have been defined, each binary operator will be defined

in three lines of input: the first of these three lines will contain the name of the

operator; the second and third lines will each contain two true / false entries.

These two lines define the table for the binary operator, without the implied

column headers across the top and row headers on the left margin.

The operator tables will be followed by a line containing a valid logic expression

satisfying the above grammar. Variables will be separated from adjacent logic

operators by one or more blank spaces. Parentheses may or may not be

separated from adjacent elements of the expression by blank spaces. You may

assume that no variable will occur more than once in an expression. The

expression will consist of at least 1 but not more than 500 characters.

The expression will be followed by zero or more lines that comprise a table of

values. Each of these lines will have one of the two forms:

<variable> true

<variable> false

No variable will appear more than once in the table.

The end of each test case will be marked by a line containing a single asterisk.

End of input will be marked by a line containing two negative integers.

Output FormatOutput FormatOutput FormatOutput Format

For each test case there will be one line of output. The case number will be

printed in the format of the sample output.

It will be followed by one of the words: true, false, or unknown; whichever is

appropriate for the given expression, as explained above.

The output format is illustrated in the sample output.

Sample InputSample InputSample InputSample Input

1 2

NOT

true false

AND

false false

false true

TWEEK

true false

true false

(x AND (NOT(y TWEEK z)))

x true

y true

*

1 1

MOCK

true true

NAND

true true

true false

(x NAND (MOCK (y NAND z)))

x false

y false

*

0 2

XOR

false true

true false

FAKE

true true

false false

((p XOR q) FAKE r)

p true

q false

*

-1 -1

Sample OutputSample OutputSample OutputSample Output

Case 1: unknown

Case 2: true

Case 3: false

Howard Cheng

ACPC 2012ACPC 2012ACPC 2012ACPC 2012

