IIUPC 2012
 Problem C: Sohel Sir's Assignment

Sohel sir gave an assignment in CSE-315 course instead of a class test. The assignment was to make questions and provide corresponding answers from the chapters 2, 3, 4, 5. Each student is assigned chapter no \mathbf{y} according to the formula :

$$
y=(\text { Roll \% 4 })+2
$$

I.e. he has to make questions and answers from chapter \mathbf{y}. According to this rule, Roll $\mathbf{4}$ was supposed to make questions and answers from chapter 2 as $(\mathbf{4 \% 4})+2=2$ and Roll $\mathbf{3 5}$ was assigned to chapter $\mathbf{5}$ as $\mathbf{(3 5 \% 4)} \mathbf{+ 2}=\mathbf{5}$. In the meantime, roll $\mathbf{3 5}$ had already made the questions \& answers from chapter 5 and Roll 4 got the complete assignment of roll 35 .So to copy that assignment Roll 4 wanted to change the divisor 4 of the formula to some number \mathbf{m}
 such number. Now, your problem is similar to the above problem.

Given two number \mathbf{x} and \mathbf{y} you have to find a positive number \mathbf{m} such that $(\mathbf{x} \% \mathbf{m})+\mathbf{2}=\mathbf{y}$. If multiple \mathbf{m} is possible, choose the minimum one .If no answer is found print Impossible.

Input

First line of input will contain the number of test cases, $\mathbf{T} \leq \mathbf{1 2 5}$. Then there follows \mathbf{T} lines, each containing two integers $\mathbf{x}\left(\mathbf{0} \leq \mathbf{x} \leq \mathbf{1 0}^{\mathbf{1 2}}\right)$ and $\mathbf{y}(\mathbf{2} \leq \mathbf{y} \leq \mathbf{x + 2})$.

Output

For each case, print \mathbf{m}, if \mathbf{m} is found. Otherwise print "Impossible" (without quotes). See the samples given below for exact formatting.

Sample Input	Output for Sample Input
4	Impossible
45	4
355	4
42	
$11 \quad 5$	
Problem Setter: Mohammad Hafiz Uddin	
Alternate Solution: Radi Muhammad Reza	

