## IIUPC 2012

## Problem B: RMQ Overkill

Range minimum query problems are getting more and more common everyday. I used to consider them as hard problems some years ago, but not anymore. So I decided to make this harder for everyone. Today you are given a sequence (with $\mathbf{0}$-based indexing) of non-negative integers which contains no more than $\mathbf{1 0 0 0 0}$ elements and where each integer is less than $\mathbf{1 0}$. For each possible query ( $\mathbf{i}, \mathbf{j}$ ) where $(\mathbf{0} \leq \mathbf{i} \leq \mathbf{j}<\mathbf{1 0 0 0 0}$ ) [ $\mathbf{N}$ is the size of the sequence], you have to find the minimum integer in that range, and add the minimums for all those queries together. When you are done that, mod the sum with $\mathbf{1 0 0 0 0 0 0 0 0 7}$ and print.

## Input

There will be multiple cases (no more than 120). You must read for cases until EOF.
For each case :
First line, an integer $\mathbf{N}(\mathbf{1} \leq \mathbf{N} \leq \mathbf{1 0 0 0 0})$, the size of the array.
Second line, a string of $\mathbf{N}$ characters where i-th character denotes the i-th element of the sequence.

## Output

For each case, one line containing an integer, $\mathbf{R}$, the result described above.

| Sample Input | Output for Sample Input |
| :--- | :--- |
| 3 | 13 |
| 143 | 11 |
| 3 | 7 |
| 413 |  |
| 3 |  |
| 121 |  |
| Problem Setter: Pratyai Mazumder |  |
| Alternate Solution: Mohammad Hafiz Uddin |  |
| Output Explanation |  |

First case : all possible queries and there results are, $(\mathbf{0}, \mathbf{0})=>\mathbf{1},(\mathbf{0}, \mathbf{1})=>\mathbf{1},(\mathbf{0}, \mathbf{2})=>\mathbf{1},(\mathbf{1}, \mathbf{1})=>\mathbf{4}$, $(1,2)=>3,(2,2)=>3$. So, $R=1+1+1+4+3+3=13$.

Second case : all possible queries and there results are, $(\mathbf{0}, \mathbf{0})=>\mathbf{4},(\mathbf{0}, \mathbf{1})=>\mathbf{1},(\mathbf{0}, \mathbf{2})=>\mathbf{1}$, $(1,1)=>1,(1,2)=>1,(2,2)=>3 . S o, R=11$.

Third case : all possible queries and there results are, $(\mathbf{0}, \mathbf{0})=>\mathbf{1},(\mathbf{0}, \mathbf{1})=>\mathbf{1},(\mathbf{0}, \mathbf{2})=>\mathbf{1},(\mathbf{1}, \mathbf{1})=>\mathbf{2}$, $(1,2)=>1,(2,2)=>1$. So, $R=7$.

