IIUPC 2012
 Problem A: Brother \& Sisters!

Taman is excited to announce that he has learnt bitwise AND operation. His Big Sister Titly has given him a sequence of non-negative integers $\boldsymbol{x}_{\boldsymbol{1}}, \boldsymbol{x}_{2} \ldots \boldsymbol{x}_{\boldsymbol{n}}$ as key. To test that whether Taman knows bitwise AND operation or not, Taman is asked to find maximum value among all ($\mathbf{a} \mathbf{A N D} \boldsymbol{x}_{\boldsymbol{i}}$) where $\mathbf{1 \leq i \leq N}$. But their youngest sister Tamanna is not happy with this. She adds another condition that for a given sequence, Taman has to answer \mathbf{Q} queries instead of just one. Can you help poor Taman?

Note:

Expression \boldsymbol{x} AND \boldsymbol{y} means applying the operation of bitwise AND to numbers \boldsymbol{x} and \boldsymbol{y}. This operation exists in all modern programming languages, for example, in language $\mathrm{C}++$ and Java it is marked as "\&".

Input

First line of input will contain the number of test cases, $\mathbf{T} \leq \mathbf{5}$. Then \mathbf{T} test cases follow. First line of each test case contains two integers $\mathbf{N}(\mathbf{1} \leq \mathbf{N} \leq \mathbf{1 0 0 0 0})$ and $\mathbf{Q}(\mathbf{1} \leq \mathbf{N} \leq \mathbf{3 0 0 0 0})$ separated by a single space. Next line contains \mathbf{N} integers $\boldsymbol{x}_{\boldsymbol{1}}, \boldsymbol{x}_{2} \ldots \boldsymbol{x}_{\boldsymbol{n}}$ separated by a single space $\left(\mathbf{0} \leq \boldsymbol{x}_{i}<\mathbf{1 0}^{9}\right)$. Each of next \mathbf{Q} lines describes a query which consists of a single integer $\mathbf{a}(\mathbf{0} \leq \mathbf{a}<\mathbf{2 3 0})$.

Output

For each query output a single integer, the maximum value of (a AND $\boldsymbol{x}_{\boldsymbol{i}}$) where $\mathbf{1} \leq \boldsymbol{i} \leq \mathbf{N}$.

Sample Input	Output for Sample Input		
$\mathbf{1}$	2		
$\mathbf{3 3}$	3		
$\mathbf{1 2 3}$	0		
$\mathbf{1 0}$			
$\mathbf{1 1}$			
$\mathbf{1 2}$			
Problem Setter: Muhammed Hedayet			

