
 
 
 

Rujia Liu's Present 6 
Happy 30th Birthday to Myself  

 
 

   

 
 

 
My 28th Birthday 

 
 
 
 

2nd December, 2012 
UVa Online Judge 



 
 

 
 

Problems 
 
 

A Special "Happy Birthday" Song!!! 
Baby Me 

"Center" of perimeter midpoints 
Detecting Code Snippets 

Egyptian Fractions (HARD version) 
Finding Black Circles 

Good Friends 
Hadamard Gate 

In an effort to Change History 
Jin Ge Jin Qu hao 

King of Fighters explained 
Lovely Magical Curves 

Melody "Creation" 
Never7, Ever17 and Water 

Optimizing Key Signature 
Planning mobile robot on Tree (EASY Version) 

Qualle? Quale? 
 
 
 

(Do you know why some of the letters are red?) 
 
As usual, there is a gift package on the contest website that contains some additional I/O data, special 
judge or data visualizer. Please make best use of it :) 
 
Thanks Md. Mahbubul Hasan for problem A, B, C, H, J, K, N, Yubin Wang for problem D, E, F, G, I, 
L, N, P, Q, Yao Li for problem F, G, M, N, O, P, Feng Chen for problem A, B, C, H, J, K, M, O, and Yi 
Yang for problem M and O. 
 
I hope you enjoy this contest, and my birthday :) 



 
Hello, everyone! My name is Rujia Liu. I used to do a lot of problem solving and 

problemsetting, but after graduated from Tsinghua University, I'm spending more 
and more time on my company L 

 
(You may realized that the paragraph above is copied from the texts of my 3rd , 

4th and 5th contest, but that's me, lazy me.) 
 
This time, my contest is all about myself. Every problem has a short story that 

is related to me. If you're interested in more details, you can ask me 
(rujia.liu@gmail.com) :)  

 
me in a singing competition 

 
This is a very important birthday for me, so I really want you enjoy this 

contest and know more about me. Please feel free to email me if you're interested in 
some non-algorithmic aspects of this contest (e.g. where to find the games I 
mentioned in the problems). 

Ah, forgot to mention, problem A, B, C and K are good starts :) 
 

 
Best regards, 

Rujia Liu 
 

mailto:rujia.liu@gmail.com


 

A Special "Happy Birthday" Song!!! 
 
There are n people (excluding myself) in my 30th birthday party. They sing the traditional "happy 
birthday" song: 
 

Happy birthday to you! Happy birthday to you! Happy birthday to Rujia! Happy birthday to you!!! 
 
Since I love music, I want to hear something more interesting, not that everyone sings together. Ah yes, 
I want one person to sing one word! 
 
For example, there are three people: Mom, Dad, Girlfriend, I'd like them to sing like this: 
 
Mom: Happy 
Dad: birthday 
Girlfriend: to 
Mom: you 
Dad: Happy 
Girlfriend: birthday 
Mom: to 
Dad: you 
Girlfriend: Happy 
Mom: birthday 
Dad: to 
Girlfriend: Rujia 
Mom: Happy 
Dad: birthday 
Girlfriend: to 
Mom: you 
 
Very nice, right? What if there are more than 16 people? That's easy: repeat the song until everyone 
has sung at least once :) 
 
Please, don't stop in the middle of the song. 
 
Input 
There is only one test case. The first line contains a single integer n (1<=n<=100).  Then each of the 
next n lines contains a capitalized name (i.e. one upper-case letter followed by zero or more lower-
case letters). Each name contains at most 100 characters and do not have whitespace characters inside. 
 
Output 
Output the song, formatted as above. 



 
 
Sample Input                              Output for Sample Input 
3 
Mom 
Dad 
Girlfriend 

Mom: Happy 
Dad: birthday 
Girlfriend: to 
Mom: you 
Dad: Happy 
Girlfriend: birthday 
Mom: to 
Dad: you 
Girlfriend: Happy 
Mom: birthday 
Dad: to 
Girlfriend: Rujia 
Mom: Happy 
Dad: birthday 
Girlfriend: to 
Mom: you 

 
 

Problemsetter: Rujia Liu 
Special Thanks: All of you, for participating in this contest; Mom and Dad, for giving birth to 
me :) 



 

Baby Me 
 
When I was born, I was 5斤 2两。Sorry for non-Chinese people. Here's what it means: 
 
1斤=0.5kg 
1两=0.05kg 
 
So 5斤 2两 means 0.5*5+0.05*2=2.6kg. 
 
Given similar information for other babies, your task is to find out their weights in kg. 
 
Input 
The first line contains the number of test cases T(T<=100).  Each test case contains a string in format 
"a斤 b两"(1<=a<=10, 1<=b<=9) or "a斤"(1<=a<=10). 
 
The input file will be encoded with UTF-8 without BOM (if you don't know what it is, you can safely 
ignore it). 
 
Output 
For each test case, print the ACCURATE weight in kg (without trailing zeros). 
 
Sample Input                             Output for Sample Input 
3 
5斤 2 两 
7斤 3 两 
6斤 

Case 1: 2.6 
Case 2: 3.65 
Case 3: 3 

 
Problemsetter: Rujia Liu 
Special thanks: Md. Mahbubul Hasan, Feng Chen 



 

"Center" of perimeter midpoints 
 
When I was a high school student, I learned that given a triangle ABC, denote D, E, F as the midpoints 
of AB, BC and CA, then three segments CD, AE, BF intersects at one point: the centroid. 
 
Then I thought about the following question: if we change "midpoint" by "perimeter midpoint", can 
CD, AE, BF still intersect at one point? 
 
To be precise, if CA+AD = DB+BC, we say D is the "perimeter midpoint" on AB.  

 
 
It's not difficult to see that there is exactly one such point lying strictly inside the segment AB. Point E 
and F are defined similarly and also have unique positions. 
 
Help (the younger) me to find out the answer! 
 
Input 
The first line contains the number of test cases T(T<=100).  Each test case contains 6 integers x1, y1, x2, 
y2, x3, y3, whose absolute values do not exceed 100. These integers represent three non-collinear points 
A(x1, y1), B(x2, y2), C(x3, y3). 
 
Output 
For each test case, if CD, AE, BF intersect at one point, print the position of the intersection to 6 
decimal places. Otherwise print "ERROR" (without quotes). 
 
Sample Input                                        Output for Sample Input 
2 
-1 0 1 0 0 1 
0 0 5 0 3 3 

Case 1: 0.000000 0.171573 
Case 2: 2.362911 0.665041 

 
Problemsetter: Rujia Liu 
Special thanks: Md. Mahbubul Hasan, Feng Chen 



 

Detecting Code Snippets 
 
Have you tried to modify code by changing some names of the identifiers? For example, the following 
codes can be changed to each other. 
 
int i, j; 
i = 3; 
j = i + 1; 

int a, i; 
a = 3; 
i = a + 1; 

 
However, "int" cannot be changed, because it's a keyword, not an identifier. Similarly, operators like 
"=" or "+" can't be changed, either. 
 
To simplify the I/O, we use one upper-case letter to denote one kind of token that cannot be changed, 
and use one lower-case letter to denote an identifier whose name can be changed. However, two 
different lower-case letters cannot be changed to the same letter. 
 
For example, if we use the following table: 
 
Token int , ; = 3 + 1 
letter A B C D E F G 
 
Then the first program can be written as AiBjCiDECjDiFGC, the second one is 
AaBiCaDECiDaFGC. 
 
Given a snippet (a small piece of code), can you find all its occurrences (possibly overlapping) in a 
large program? 
 

Input 
The first line contains the number of test cases T(T<=100).  Each test case contains two lines, the first 
line is the program to be searched in, and the second line is the snippet. Both lines will contain letters 
only. There will be at most 106 characters in either string. The total input size will be less than 10M 
bytes. 
 
Output  
For each test case, print the number of occurrences of the snippet in the program. 
 
Sample Input                            Output for Sample Input 
2 
ccddef 
aab 
ABdefDEabcABcaa 
ABabc 

Case 1: 2 
Case 2: 1 
 



 
 
Bonus 
Be sure to test your program with the data provided in our gift package. 
 
Explanation 
In the first sample, "ccd" and "dde" are both "changed" version of "aab". "def" is not counted because 
a cannot be changed into both d and e. In the second sample, "DEabc" is not counted because "AB" 
cannot be changed into "DE". "ABcaa" is not counted because b and c cannot be both changed to a. 

 
Problemsetter: Rujia Liu 
Special thanks: Gelin Zhou, Yubin Wang 



 

Egyptian Fractions (HARD version) 
 
Given a fraction a/b, write it as a sum of different Egyptian fraction. For example, 2/3=1/2+1/6. 
 
There is one restriction though: there are k restricted integers that should not be used as a denominator.  
For example, if we can't use 2~6, the best solution is: 
 

2/3=1/7+1/8+1/9+1/12+1/14+1/18+1/24+1/28 
 
The number of terms should be minimized, and then the large denominator should be minimized. If 
there are several solutions, the second largest denominator should be minimized etc. 
 
Input 
The first line contains the number of test cases T(T<=100). Each test case begins with three integers a, 
b, k(2<=a<b<=876, 0<=k<=5, gcd(a,b)=1). The next line contains k different positive integers not 
greater than 1000. 
 
Output 
For each test case, print the optimal solution, formatted as below.  
 
Sample Input                                Output for Sample Input 
5 
2 3 0 
19 45 0 
2 3 1 2 
5 121 0 
5 121 1 33 

Case 1: 2/3=1/2+1/6 
Case 2: 19/45=1/5+1/6+1/18 
Case 3: 2/3=1/3+1/4+1/12 
Case 4: 5/121=1/33+1/121+1/363 
Case 5: 5/121=1/45+1/55+1/1089 
 

 
Extremely Important Notes 
It's not difficult to see some inputs are harder than others. For example, these inputs are very hard 
input for every program I have: 
 
596/829=1/2+1/5+1/54+1/4145+1/7461+1/22383 
265/743=1/3+1/44+1/2972+1/4458+1/24519 
181/797=1/7+1/12+1/2391+1/3188+1/5579 
616/863=1/2+1/5+1/80+1/863+1/13808+1/17260 
22/811=1/60+1/100+1/2433+1/20275 
732/733=1/2+1/3+1/7+1/45+1/7330+1/20524+1/26388 
 
However, I don't want to give up this problem due to those hard inputs, so I'd like to restrict the input 
to "easier" inputs only. I know that it's not a perfect problem, but it's true that you can still have fun 
and learn something, isn't it? 
 
Some tips: 
l Watch out for floating-point errors if you use double to store intermediate result. We didn't use 

double. 
l Watch out for arithmetic overflows if you use integers to store intermediate result. We carefully 

checked our programs for that. 
 

Problemsetter: Rujia Liu 
Special thanks: Yubin Wang 



 

Finding Black Circles 
 
There are some black circles completely drawn on a white paper. Given the digital image of the paper, 
could you find the circles? 
 
The width and height of the digital image are w and h pixels. Each pixel is a 1x1 square. The center of 
the top-left pixel is (0,0) and the center of the bottom-right pixel is (w-1,h-1). For each circle, the 
center coordinates and the radius are all integers. If a circle passes through a pixel (merely touching its 
border is not considered passing), the pixel is rendered black (1), otherwise it is white (0). Due to 
noises, at most 2% black pixels might become white. No white pixels will become black. 
 
Input 
The first line contains the number of test cases T(T<=20). Each test case begins with two integers w 
and h (30<=w,h<=100). The following h lines contain the digital image. There will be at least one and 
at most five circles. The radius of each circle will be at least 5. The judge input will be carefully 
chosen to avoid ambiguities and confusions. 
  
Output  
For each test case, print the number of circles k, and k tuples (r,x,y), each describing a circle centered 
at (x,y) with radius r. Tuples should be sorted lexicographically (first r, then x, and then y).  



 
 
Sample Input                            Output for Sample Input 
1 
30 30 
000000000000000000000000000000 
000000000000011111110000000000 
000000000000110000011000000000 
000000000001100000001100000000 
000000000011000000000110000000 
000000000110000000000011000000 
000000011111110000000001000000 
000001110100011100000001000000 
000011000100000110000000000000 
000110000100000011000001000000 
001100000100000001100001000000 
001000000110000000100011000000 
011000000011000000110110000000 
010000000001100000011100000000 
010000000000110000011000000000 
010000000000011111110000000000 
010000000000000000010000000000 
010000000000000000010000000000 
011000000000000000110000000000 
001000000000000000100000000000 
001000000000000001100000000000 
000110000000000011000000000000 
000011000000000110000000000000 
000001110000011100000000000000 
000000011111110000000000000000 
000000000000000000000000000000 
000000000000000000000000000000 
000000000000000000000000000000 
000000000000000000000000000000 
000000000000000000000000000000 

Case 1: 2 (7,16,8) (9,10,15) 
 

 
Bonus 
Be sure to test your program with the data provided in our gift package. 

 
Problemsetter: Rujia Liu 
Special thanks: Yubin Wang, Yao Li 
 



 

Good Friends 
 
There are n people in a class. Some of them are good friends. They go out frequently. Given m 
activities, find out which people are good friends. 
 
In this problem, if a set of at least two people attended in at least 20% activities together (possibly with 
some other people), they're regarded as good friends. 
 
Note that "good friends" should be maximal. That means, if you add another person to the set, they 
will not be "good friends" anymore. 
 
Input 
The first line contains the number of test cases T(T<=5). Each test case begins with two integers n, m 
(2<=n<=30, 5<=m<=10,000), the number of people in the class, and the number of activities. Each of 
the m lines begins with an integer k (2<=k<=n), the number of people attending the activity, then k 
different integers (1~n) followed. People are numbered 1 to n. 
 
Output 
For each test case, print the number of "good friends" sets in the first line, and then print one line for 
each set. The numbers in each set should be sorted in increasing order. Sets should be sorted in 
lexicographical order. Print a blank line after each test case. 
 
Sample Input                               Output for Sample Input 
1 
10 10 
7 1 2 3 4 5 6 7 
7 2 4 5 6 7 9 10 
8 1 2 4 5 6 7 9 10 
6 2 5 6 7 8 10 
6 1 3 4 6 9 10 
8 1 2 4 5 6 7 9 10 
6 1 2 3 5 6 7 
6 2 5 6 7 8 10 
7 2 5 6 7 8 9 10 
8 2 3 4 5 6 7 9 10 

Case 1: 6 
1 2 3 5 6 7 
1 2 4 5 6 7 9 10 
1 3 4 6 
2 3 4 5 6 7 
2 5 6 7 8 10 
3 4 6 9 10 

 
Data Generation 
Judge inputs are generated randomly this way: 
l n = 30, m = 10000 
l Generate four reference sets of people, each having 8~12 elements 
l For each activity, randomly import one reference set, then add a random number of random 

people 
 
Bonus 
Be sure to test your program with the data provided in our gift package. 

 
Problemsetter: Rujia Liu 
Special thanks: Yubin Wang, Yao Li 



 

Hadamard Gate 
 
If you know a little bit of quantum computers, this problem is: 
 
Given n Hadamard Gates in series and an input qubit, predict the measurement of the output. 
 
If you don't know about quantum computers, keep on reading. 
 
In quantum physics, superposition principle states that if a quantum system (e.g. an electron) can be in 
one of two states (denoted by |0> and |1>), it can also be in any linear superposition of those two states 
a|0> + b|1>, where a and b are two complex numbers, normalized so that |a|2 + |b|2 = 1. Such a 
superposition, a|0> + b|1>, is the basic unit of encoded information in quantum computers, called 
qubit (pronounced "cubit"). 
 
An elementary quantum operation is analogous to an elementary gate like the AND or NOT gate in 
classical circuit. One of the most important examples is the Hadamard gate, denoted by H, which 
operates on a single qubit. On input |1> or |0>, it outputs: 
 

 

 
 
Due to linearity of quantum physics, the output for an arbitrary superposition a|0>+b|1> is 
aH(|0>)+bH(|1>). 
 
However, the linear superposition is the private world of the quantum system. For us to get a glimpse 
of its state, we must make a measurement, and when we do so, we get a single bit of information - 0 or 
1. If the state is a|0>+b|1>, then the outcome of the measurement is 0 with probability |a|2 and 1 with 
probability |b|2 (luckily we normalized so |a|2+|b|2=1). 
 
Input 
The first line contains the number of test cases T(T<=100). Each test case contains a single line of 
format "a0 a1 b0 b1 n", where a0, a1, b0, b1 are real numbers with at most 4 decimal places, denoting a 
qubit (a0+a1i)|0> + (b0+b1i)|1>, and n (1<=n<=106) is the number of Hadamard Gates. 
 
Output  
For each test case, print the probability that the measurement is 0, to 6 decimal places. 
 
Sample Input                                        Output for Sample Input 
2 
1.0 0.0 0.0 0.0 1 
0.017133 0.704420 0.410273 0.578943 1 

Case 1: 0.500000 
Case 2: 0.914848 

 



 
 

Notes  
(The following information is interesting, but will NOT help you solve this problem) 
 
The act of measurement causes the system to change it state. 
 
Take an electron as an example, if the outcome of the measurement is 0, then the new state of the 
system is |0> (the ground state), and if the outcome is 1, the new state is |1> (the excited state). This 
feature of quantum physics, that a measurement disturbs the system and forces it to choose (in this 
case ground or excited state), is another strange phenomenon with no classical analog. 
 
You may conclude that quantum physics is completely different from, and unrelated to classical 
physics, but things are not that simple. Search the web for "Schrödinger's cat". You'll get amazed. 
 
Furthermore, take a look at this year (2012)'s Nobel Prize in Physics[1],  which was awarded "for 
ground-breaking experimental methods that enable measuring and manipulation of individual quantum 
systems". 
 
References 
[1] "The Nobel Prize in Physics 2012". Nobelprize.org. 12 Nov 2012 
http://www.nobelprize.org/nobel_prizes/physics/laureates/2012/ 
 

 
Problemsetter: Rujia Liu 
Special thanks: Md. Mahbubul Hasan, Feng Chen 

http://www.nobelprize.org/nobel_prizes/physics/laureates/2012/


 
 

In an effort to Change History 
 
Have you ever hoped to change history, like me? I guess so. 
 
Many people think it's logically impossible to change history, because the new history would evolve 
into a new present (here "present" means "now", not "gift"), leading to some contradicting facts. 
 
While I haven't find a way to do time-travel and change history (if you know the way, please tell 
me!!!), at least I don't think it's logically impossible, because we can never sense the whole world (or 
worlds, if you believe in parallel universe/multiverse theory[1]). If we're clever enough, we can make a 
very small change to the history, which would evolve into a different, but consistent present (that 
means we can't sense the difference), which would in turn evolve into a better future! 
 
Let's make a thought experiment [2]: 
l There are x possible events in the past, labeled a1~ax. 
l There are y possible events now (but some of them may be unable to sense), labeled b1~by. 
l There are z possible events that may happen in near future, labeled c1~cz. 
l Present events only depend on past events, with known deterministic rules. 
l Future events only depend on present events, with known deterministic rules. 
l Make some changes to the past events (happened->not happened, and vice versa) so that the 

sensed present events remain the same, then some of the future events will change. 
 
All these future events are good, so I want to maximize the number of these future events that will 
actually happen, by changing some of the past events. If there are more than one way to change history, 
make the smallest change (i.e. change the minimal number of past events). 
 
To simplify the problem, each of the rules mentioned above is described by "event=formula", where 
"formula" is a string representation of a boolean formula which satisfies: 
l Only three operators: AND (&&), OR (||), NOT (!) are supported. 
l NOT has the highest priority and will not be repeated. i.e. !!x is invalid (but !(!x) is valid). 
l AND and OR has the medium and lowest priority. The associativity of both AND and OR is left-

to-right. i.e. x&&y&&z is actually (x&&y)&&z. 
l Parentheses have usual meanings. 
l There will be no whitespace characters within the formula. 
 

Input 
The first line contains a single integer T(T<=1000), the number of test cases. Each test case begins 
with three positive integers x, y, z (1<=x,y,z<=15). The second line contains x 0-1 integers, describing 
the past (before we change it). The i-th integer is 1 if and only if event ai happened in the past. Each of 
the following y lines contains the formula of b1~by (in this order). If the formula is preceded by an 
asterisk ('*'), that means we can sense whether that event is happening now (i.e. that boolean variable 
should not be changed). Otherwise that event can't be sensed. The following z lines contain the 
formulae of c1~cz (in this order), in the same format, except that there will be no asterisks. The lines 
containing rules will not have any whitespace characters inside. 



 
 
Output 
For each test case, print "Increased from a to b". If we're unable to get more good future 
events, print "Unable to improve future.". If there is any solution, print the list of changed 
past event in the second line. If there is more than one solution, print the lexicographically smallest 
(when doing comparison, regard the solution as a list of integers). Print a blank line after each test 
case. 
 
Sample Input                                 Output for Sample Input 
3 
2 1 2 
0 1 
b1=a1&&a2 
c1=b1 
c2=b1 
2 1 2 
0 1 
*b1=a1&&a2 
c1=b1 
c2=b1 
3 4 5 
0 0 0 
*b1=a1&&(a3||a2) 
b2=!a2 
b3=a2&&a3 
b4=a1 
c1=!b2 
c2=b3 
c3=b4 
c4=b2||!b4 
c5=!b2||!b4 

Case 1: Increased from 0 to 2. 
a1 
 
Case 2: Unable to improve future. 
 
Case 3: Increased from 2 to 4. 
a2 a3 

 
Bonus 
Be sure to test your program with the data provided in our gift package. 
 
Notes 
[1] See: http://en.wikipedia.org/wiki/Multiverse 
[2] See: http://en.wikipedia.org/wiki/Thought_experiment 

 
Problemsetter: Rujia Liu 
Special thanks: Yubin Wang 

http://en.wikipedia.org/wiki/Multiverse
http://en.wikipedia.org/wiki/Thought_experiment


 

Jin Ge Jin Qu hao 
 
(If you smiled when you see the title, this problem is for you ^_^) 
 
For those who don't know KTV, see: http://en.wikipedia.org/wiki/Karaoke_box 
 
There is one very popular song called Jin Ge Jin Qu(劲歌金曲). It is a mix of 37 songs, and is 
extremely long (11 minutes and 18 seconds)[1]. 
 
Why is it popular? Suppose you have only 15 seconds left (until your time is up), then you should 
select another song as soon as possible, because the KTV will not crudely stop a song before it ends 
(people will get frustrated if it does so!). If you select a 2-minute song, you actually get 105 extra 
seconds! ....and if you select Jin Ge Jin Qu, you'll get 663 extra seconds!!! 
 
Now that you still have some time, but you'd like to make a plan now. You should stick to the 
following rules: 
l Don't sing a song more than once (including Jin Ge Jin Qu). 
l For each song of length t, either sing it for exactly t seconds, or don’t sing it at all. 
l When a song is finished, always immediately start a new song. 
 
Your goal is simple: sing as many songs as possible, and leave KTV as late as possible (since we have 
rule 3, this also maximizes the total lengths of all songs we sing) when there are ties.  
 

Input 
The first line contains the number of test cases T(T<=100). Each test case begins with two positive 
integers n, t(1<=n<=50, 1<=t<=109), the number of candidate songs (BESIDES Jin Ge Jin Qu) and the 
time left (in seconds). The next line contains n positive integers, the lengths of each song, in seconds. 
Each length will be less than 3 minutes[2]. It is guaranteed that the sum of lengths of all songs 
(including Jin Ge Jin Qu) will be strictly larger than t. 
 
Output 
For each test case, print the maximum number of songs (including Jin Ge Jin Qu), and the total lengths 
of songs that you'll sing. 
 
Sample Input                                           Output for Sample Input 
2 
3 100 
60 70 80 
3 100 
30 69 70 

Case 1: 2 758 
Case 2: 3 777 
 

 
Explanation 
In the first example, the best we can do is to sing the third song (80 seconds), then Jin Ge Jin Qu for 
another 678 seconds. 
 
In the second example, we sing the first two (30+69=99 seconds). Then we still have one second left, 
so we can sing Jin Ge Jin Qu for extra 678 seconds. However, if we sing the first and third song 
instead (30+70=100 seconds), the time is already up (since we only have 100 seconds in total), so we 
can't sing Jin Ge Jin Qu anymore! 
 

http://en.wikipedia.org/wiki/Karaoke_box


 
Bonus 
Be sure to test your program with the data provided in our gift package. 



 
 
Notes 
[1] I know that there are Jin Ge Jin Qu II and III, and some other unofficial versions. But in this 
problem please forget about them. 
[2] I know that most songs are longer than 3 minutes. But don't forget that we could manually "cut" 
the song after we feel satisfied, before the song ends. So here "length" actually means "length of the 
part that we want to sing". 

 
Problemsetter: Rujia Liu 
Special thanks: Md. Mahbubul Hasan, Feng Chen 



 
 

King of Fighters explained 
 
King of Fighters (KOF) is one of my favorite fighting games. So when I tried to make my own 
fighting games (though I never actually started…), I took sometime investigating how the KOF system 
works. 
 
After sometime, I came up with the following simple model: 
l At any time, each person can be in one of its designed states (e.g. standing, running, jumping, 

punching etc). 
l Each state has a set of frames. 
l Each frame is an image (frame of animation) plus two areas: attacking area and weak area. Note 

that both areas can be composed of several disjoint regions. 
l Taking into account both characters' positions, if one character's attacking area overlaps (with 

non-zero intersection area) with his opponent's weak area, the opponent gets hit. 
l It's possible that both characters get hit at the same time. 
 

 
(Athena in KOF97. In HTML version of this problem, it's a GIF animation) 

 
For simplicity, both attacking areas and weak areas are approximated by union of rectangles. The 
rectangles might be intersecting. Only their union represents the attacking areas and weak areas. 
 
Your task is to decide, given the positions of these areas, who is getting hit. 
 

Input 
The first line contains the number of test cases T(T<=100). Each test case contains two parts in the 
same format, describing the first character, then the second one. The first line of each part contains 
two integers a and w (0<=a,w<=5), the number of rectangles in the attacking area and weak area, 
respectively. Each of the a lines contains four non-negative integers x1, y1, x2, y2 (0<=x1<x2<=100, 
0<=y1<y2<=100), that means the set of points (x,y) satisfying x1<=x<=x2, y1<=y<=y2 is in the attacking 
area. The next w lines describe the weak area in the same format. 
 
Output 
For each test case, print "First" if only the first character is hit, "Second" if only the second 
character is hit, "Both" if both are hit, "Neither" if neither is hit. 



 
 
Sample Input                                 Output for Sample Input 
3 
1 1 
2 2 5 3 
0 0 2 4 
0 1 
4 0 6 4 
3 1 
1 2 2 4 
1 0 2 4 
1 2 5 4 
0 1 4 4 
3 5 
4 0 5 5 
0 2 2 4 
1 0 2 3 
0 2 1 4 
2 3 5 4 
2 1 4 3 
0 0 5 4 
0 1 1 3 
0 0 
5 1 
0 2 4 3 
2 1 3 3 
1 4 5 5 
0 3 3 5 
0 0 4 5 
1 1 4 5 

Case 1: Second 
Case 2: Both 
Case 3: Neither 
 

 
Bonus 
Be sure to test your program with the data provided in our gift package. 

 
Problemsetter: Rujia Liu 
Special thanks: Md. Mahbubul Hasan, Feng Chen, SNK (for creating KOF series) 



 
 

Lovely Magical Curves 
 
NURBS Curves are lovely and magical, because you can make a lot of interesting shapes from it: 
 

 
 
Given two NURBS curves, your task is the find all their intersection points.  
 
If you're not familiar with NURBS curves, here we go: 
 
NURBS is a parametric curve which takes the following form: 

∑

∑

=

== n

i
kii

i

n

i
kii

uNw

PuNw
uC

1
,

1
,

)(

)(
)(  

Where u is the parameter, n is the number of control points, k is the degree of the curve, Pi and wi are 
the location and weight of the i-th control point. 
 
The basis function Ni,k is defined recursively below: 

)()()( 1,1
11

1
1,, uN

tt
utuN

tt
tuuN ki

iki

ki
ki

iki

i
ki −+

+++

++
−

+ −
−

+
−

−
=  



 <≤

= +

else
tutif

uN ii
i ,0

,1
)( 1

0,  

Where ti is the i-th knot value. In the formula above, 0/0 is deemed to zero. 
 
To understand the formulae above, here are some brief explanations of the parameters: 
 
Degree. The degree is a positive integer. NURBS lines and polylines are usually degree 1 (linear 
curve), NURBS circles are degree 2 (quadratic curve), and most free-form curves are degree 3 or 5.  
 
Control Points. The control points are a list of at least degree+1 points. One of easiest ways to change 
the shape of a NURBS curve is to move its control points[1]. Each control point has an associated 
number called weight. In this problem, weights are positive numbers. If you increase the weight of a 
control point, the curve is pulled toward that control point and away from other control points. 
 



 
Knots. The knot vector is defined as U = [t1, t2, ... , tm]. The relation between the number of knots m, 
the degree k, and the number of control points n is given by m = n + k + 1[2]. The sequence of knots in 
the knot vector U is assumed to be non-decreasing, i.e. ti <= ti+1. Each successive pair of knots 
represents an interval [ti, ti+1) for the parameter values to calculate a segment of a shape. Thus, the 
whole NURBS curve is defined within [t1, tm). The number of times a knot value is duplicated is 
called the knot's multiplicity, which should be no more than the degree. Duplicate knot values in the 
middle of the knot list make a NURBS curve less smooth.  
 
If you're still puzzled after reading all the information above, suppose we're moving u from t1 towards 
tm (but never reach tm), then the point C(u) will move long the NURBS curve we define. 
 
Input 
The first line contains the number of test cases T(T<=25). Each test case contains two parts, one for 
each NURBS curve. Each curve begins with two integers n and m (2<=n<=20), the number of control 
points and the number of knots. Each of the next n lines contains three real numbers x, y, w 
(0<=x,y<=10, 0<w<=10), describing a control point (x, y) with weight w. The next line contains m real 
numbers, describing the knot vector. The first knot value is always 0 and the last one is always 1. The 
degree of both NURBS curves will be 1, 2, 3 or 5. 
 
Output 
For each test case, print the number of intersection points in the first line, then each point is printed in 
a following line. The coordinates should be rounded to three decimal places, and points should be 
sorted lexicographically (i.e. points with smaller x-coordinate comes earlier). Inputs are carefully 
designed so that the minimal difference of x-coordinate between any two intersection points will be at 
least 0.005 (otherwise the sorting result might be affected by numerical stability). Print a blank line 
after each test case. 
 



 
 
Sample Input                                      Output for Sample Input 
2 
8 12 
2   0 1 
0   1 1 
1   3 2 
1.5 2 1 
2.5 2 1 
3   3 2 
4   1 1 
2   0 1 
0 0 0 0 0.2 0.4 0.6 0.8 1 1 1 1 
2 4 
0 0 1 
4 3 1 
0 0 1 1 
7 10 
1 1.732 1 
0 0 0.5 
2 0 1 
4 0 0.5 
3 1.732 1 
2 3.464 0.5 
1 1.732 1 
0 0 0 0.333 0.333 0.667 0.667 1 1 1 
7 10 
0 1.732 1 
2 0 0.5 
3 0 1 
6 0 0.5 
2 1.732 1 
6 3.464 0.5 
0 1.732 1 
0 0 0 0.333 0.333 0.667 0.667 1 1 1 

Case 1: 2 
(1.029, 0.772) 
(3.221, 2.416) 
 
Case 2: 6 
(0.847, 1.092) 
(1.307, 2.078) 
(2.283, 2.274) 
(2.538, 0.133) 
(2.693, 2.078) 
(3.153, 1.092) 
 

 



 
 
Bonus 
You may find the data visualizer and additional testdata in the gift package useful. It requires Python 
and PyOpenGL. 
 
Notes 
[1] You can try it out: http://geometrie.foretnik.net/files/NURBS-en.swf 
[2] In OpenNURBS/Rhinoceros website, m = n + k - 1. The algorithm presented here is referred as 
"some older algorithms". When solving this problem, please stick to this problem description. 
[3] The pictures of the samples are shown below: 

         
 

Problemsetter: Rujia Liu 
Special thanks: Yubin Wang 
 

http://geometrie.foretnik.net/files/NURBS-en.swf


 
 

Melody "Creation" 
 
I have written two songs, one is called "烟雨"[1] and the other one "沧浪"[2]. 
 
Writing songs requires a lot of work, especially when you need to give a performance on a stage, in a 
serious competition. You need to polish your lyrics, melody, orchestration[3] again and again, and you 
need a lot of rehearsals with your friends (who play the piano/flute etc, or sing harmony). 
 
Here is the photo of "my team" before the performance of "沧浪". 
 

 
 
You may wonder how I wrote songs. The short answer is: I didn't "write" songs, I just "select" from 
music fragments that automatically came into my mind. So it is essential to note down the melody 
quickly when it suddenly appears. 
 
Unfortunately, I don't have absolute pitch or well-developed long-term relative pitch, so I have to stick 
to the movable do system [4]. I use 1~7 to represent do, re, mi, fa, sol, la to si, and #1 to represent #Do 
etc. When I'm changing the key, I'll write syllables in both keys (formatted as "s1=s2" that means "this 
note is syllable s1 in the old key, which is also syllable s2 in the new key"), like this: 
 

5 5 6 5 1=4 3 | 1 1 2 1 5 4 | 1=5 5 5 3 1 7=3 2 | b7 b7 6 4 5=2 1 || 
 
Well, I admit this is a weird way to transcript the birthday song, but ... You know what I mean, right? 
 
However, after I wrote down the whole thing, I often find a lot of ridiculous modulations (i.e. 
changing key) -- I just couldn't understand why I changed the key. Luckily, I don't need to know why. 
All I need is a small tool that rewrites the (possibly weird) melody in a "reasonable" way. By 
"reasonable", I mean a good balance between the number of modulations and the number of 
accidentals (i.e. sharp or flats). 
 
Given the maximum number of accidentals, find a transcript with minimal modulations.   



 
 
Notes: 
l Don't worry about the missing octaves information (e.g. the "5 5 5 3" part actually contains three 

"so"s in two different octaves) and rhythm information. I can always remember them. 
l I always explicitly written down every accidental (both before and after rewriting). For example, 

if I write "b7 7", the second note is a normal "si". Also, I never write things like "b4" or "#7" 
(both before and after conversion), I'll write "3" and "1" instead. 

l When counting accidentals, "#5=b3" contains two accidentals, though it's only one note. 
l If there are multiple solutions, print the lexicographically smallest one (the melody should be 

regarded as a sequence of strings). For example, "1 2 b3 ||" can be rewritten to "1=2 3 4 ||" or "1 
2=3 4". The second one is better. However, "6 7 1" is better than both, because there is no 
modulation at all! 

l You may change the first note. For example, the optimal way to express both "b7 b7 b7 b7 ||" and 
"5 5 5 5 ||" is "1 1 1 1 ||". 

 

Input 
The first line contains the number of test cases T(T<=100). Each test case contains two lines. The first 
line contains the maximal number of accidentals, and the second line contains the initial transcript, 
ending with a double barline (||). Adjacent symbols are separated by a single space. There will be no 
more than 100 notes/barlines in each transcript. 
 
Output 
For each test case, print the transcript with minimal modulations. If there are multiple solutions, print 
the lexicographically smallest one (don't forget the transcript is regarded as a sequence of strings, not a 
big string). Barlines ("|" and "||") should be output as-is. 
 
Sample Input                                 Output for Sample Input 
5 
0 
5 5 6 5 1=4 3 | 1 1 2 1 5 4 | 
1=5 5 5 3 1 7=3 2 | b7 b7 6 4 
5=2 1 || 
1 
b7 b7 b7 b7 7 || 
0 
b7 b7 b7 b7 7 || 
5 
6 7 6 7 7 7 || 
1 
1 #1 2 #2 3 #4 || 

Case 1: 5 5 6 5 1 7 | 5 5 6 5 2 1 | 
5 5 5 3 1 7 6 | 4 4 3 1 2 1 || 
Case 2: 1 1 1 1 #1 || 
Case 3: 3 3 3 3 4 || 
Case 4: #2 4 #2 4 4 4 || 
Case 5: 2 #2 3 4=3 4 5 || 
 



 
 
Background 
For those who are not familiar with music, here is some information: 
l There are 12 different syllables in the movable do system: 1, #1, 2, #2, 3, 4, #4, 5, #5, 6, #6, 7. 

The pitch interval of adjacent syllables is one semitone. You can label them 0~11, and the "pitch 
interval" calculation is done mod 12. For example, the pitch interval of #6 and 2 is 2-10=4 (mod 
12), you can also get this by counting: #6 ->7 -> 1 -> #1 -> 2. Four semitones. 

l When we hear "1 2 3", we may also consider it "4 5 6", because the sequence of "adjacent pitch 
interval" of both melody is (2, 2). Similarly, "2 3 4 5" and "6 7 1 2" (the last "1 2" is in a higher 
octave) are similar, because their sequence of "adjacent pitch interval" are both (2, 1, 2). Here 
"similar" means "we can rewrite either melody to the other". 

l Now consider the last example, "1 #1 2 #2 3 #4", the pitch interval sequence is (1, 1, 1, 1, 2). The 
rewritten transcript has one modulation, so it can be divided into two parts: "2 #2 3 4=3" and "4=3 
4 5", the pitch interval sequence of the first part is (1, 1, 1), and the second sequence is (1, 2). 
Note that in the first part "4=3" uses its old syllable "4", and in the second part, "4=3" uses its new 
syllable, "3". Another solution with minimal number of modulation but lexicographically larger, is 
"3 4 #4 5=3 4 5 ||" 

 
Notes 
[1] This song was written in 2005, but did not get any serious treatment until in 2007, when I 
participated in Tsinghua University's Campus singers' competition. 
[2] This song was written especially for the final round of Tsinghua University's Campus singers' 
competition, April 2008. 
[3] The lyrics of both songs were written by Bing Song, harmony primarily by Kai Chung Tam and 
Zhen Shang, orchestration was done by Jun Huang, and the initial piano score was written by Qindi Li. 
I thank them from the bottom of my heart. 
[4] It's called "首调唱法" in Chinese. See http://en.wikipedia.org/wiki/Solf%C3%A8ge 
 

 
Problemsetter: Rujia Liu 
Special thanks: Yubin Wang, Yi Yang, Yao Li, Feng Chen 

http://en.wikipedia.org/wiki/Solf%C3%A8ge


 
 

Never7, Ever17 and Water 
 
Infinity is one of my favorite game series. If you have ever played Never7, you'll know that Haruka, 
Kurumi and Izumi all like water.  
 

                       
 
If you have ever played Ever17, you'll know that the entire story of Ever17 happened under the sea. 
 

 
 
So "water" is very important in these two games. That's why I made this problem, in which you need 
to design an amazing water system. 
 
It is a circulation system (i.e. no "source" or "sink" of water) consisting of m pipes connecting n 
junctions. No water is created or destroyed during circulation, so for each junction, the total amount of 
water coming into it should be the same of the amount going out of it, for each unit time.  
 
Pipes are deformable, so we can easily control the water speed through them. However, each pipe has 
a pair of lower-bound and upper-bound, and the actual water speed through it must lie within the 
bounds. 
 
Pipes are transparent, so you can actually see how fast the water is going through each pipe. To make 
it look beautiful, the water speed should be as balanced as possible. I.e. the difference between the 
maximal water speed and the minimal water speed should be minimized. 
 
Could you find the optimal design? 
 



 
Input 
The first line contains the number of test cases T(T<=100). Each test case begins with two integers n 
and m (2<=n<=50, 1<=m<=200), the number of junctions and the number of pipes. Each of the 
following m lines contains four integers u, v, b, c (1<=u,v<=n, u!=v, 0<=b<=c<=100), that means there 
is a pipe connecting junction u and v, and the speed of water flowing from u to v, denoted by f, should 
satisfy b<=f<=c. Junctions are numbered 1 to n, and pipes are numbered 1 to m (in the same order that 
they appear in the input). Note that the pipes need not be straight, so two junctions can be connected 
by several pipes. 
 
Output 
For each test case, print the minimal difference between the maximum speed and the minimum speed 
to five decimal places. If there is no solution, print -1. 
 
Sample Input                                 Output for Sample Input 
3 
4 4 
1 2 1 4 
2 3 2 5 
3 4 3 6 
4 1 4 7 
3 3 
1 2 1 2 
2 3 2 3 
3 1 3 4 
2 3 
1 2 3 3 
2 1 0 10 
2 1 0 10 

Case 1: 0.00000 
Case 2: -1 
Case 3: 1.50000 
 

 
Problemsetter: Rujia Liu 
Special thanks: Md. Mahbubul Hasan, Yubin Wang, Yao Li, KID (for creating infinity series) 



 
 

Optimizing Key Signature 
 
"A key signature is not the same as a key; key signatures are merely notational devices. They are 
convenient principally for diatonic or tonal music. Some pieces that change key (modulate) insert a 
new key signature on the staff partway, while others use accidentals: natural signs to neutralize the 
key signature and other sharps or flats for the new key."  

-- Wikipedia 
 
You see, key signatures can be really confusing at times. For example, consider the follow score, 
whose key signature is "0 sharp/flat" (which usually indicates C major/A minor): 

 
(In ASCII format: B #C #D E #F #G #A B) 

 
It's more reasonable to rewrite the score in the key signature "5 sharp" (which usually indicates B 
major/g# minor): 

 
(In ASCII format: B C D E F G A B) 

 
This is more "natural" because no accidentals (i.e. sharp/flat/natural sign) exist. 
 
Given a music piece with a key signature, your task is the find the best key signature that minimizes 
the number of accidentals. Under that condition, the number of sharps/flats in the key signature should 
be minimized. Note that you CANNOT change the staff position of any note. For example, you can't 
change #G to bA even if this can save accidentals. 
 
To simplify this problem, we only consider sharp, flat and natural accidentals (no double accidentals 
or half-sharps etc), and all the notes are in the same octave. No notes will be tied to the same note 
across the barline. 
 
In your optimized score, no courtesy or cautionary accidental should be placed by a note whose pitch 
is, strictly speaking, already given by the key signature. However, in the original piece, such 
accidentals might exist to make people's life easier, because even musicians may sometimes get 
confused when reading the score at speed. 
 
Important notes:  
l Don't forget the effect of accidental last until the end of the measure. For example, the measure 

bA A A A contains only one accidental, but the last three notes are also affected, so all four notes 
are of the same pitch. 

l The effect of the accidental has to be understood in relation to the "natural" meaning of the note's 
staff position, so in the key signature with 3 sharps, a bG note is actually TWO semitones lower 
than G (which is actually #G, thanks to the key signature). 



 
 

Input 
The first line contains the number of test cases T(T<=100). Each test case begins with the initial key 
signature formatted as "m#/b", that means the key signature has m sharps/flats (0<=m<=7). If m=0, 
then the #/b part is omitted. The next line contains the notes, separated by barlines '|' and ending with a 
double barline "||". Consecutive notes and barlines are separated by a single space. Each note is 
formatted as two characters, where the first is either empty or one of #(sharp), b(flat) or n(natural), the 
second character is one of C,D,E,F,G,A,B (upper-case). There will be at most 10 measures and 100 
notes in each score. 
 
Output 
For each test case, print the minimum number of accidentals in the first line, and then the best key 
signatures having the least number of sharps/flats, in the same format as the input. Key signatures 
should be sorted lexicographically. Print a blank line after each test case. 
 
Sample Input                                 Output for Sample Input 
4 
0 
C D E #F G | A B C || 
1b 
F F bB B | B B #F F bD || 
7# 
C D bE E F bG | G A bB || 
0 
#F #C bB bE || 

Case 1: 0 
1# 
 
Case 2: 1 
4b 
 
Case 3: 3 
5# 
 
Case 4: 2 
2# 2b 
 
 

Appendix 
 
Staff. In standard Western musical notation, the staff, or stave, is a set of five horizontal lines and four 
spaces that each represent a different musical pitch. 
 
See: http://en.wikipedia.org/wiki/Staff_%28music%29 
 
Key signature. A key signature is a series of sharp or flat symbols placed on the staff, designating 
notes that are to be consistently played one semitone higher or lower than the equivalent natural notes 
unless otherwise altered with an accidental... 
 
See: http://en.wikipedia.org/wiki/Key_signature 
 
Accidentals. An accidental is a note whose pitch (or pitch class) is not a member of a scale or mode 
indicated by the most recently applied key signature ...In most cases, a sharp raises the pitch of a note 
one semitone while a flat lowers it a semitone. A natural is used to cancel the effect of a flat or sharp. 
This system of accidentals operates in conjunction with the key signature, whose effect continues 
throughout an entire piece, unless canceled by another key signature. An accidental can also be used to 
cancel or reinstate the flats or sharps of the key signature...accidentals have been understood to 
continue for the remainder of the measure in which they occur, so that a subsequent note on the same 
staff position is still affected by that accidental, unless marked as an accidental on its own... 
 
See: http://en.wikipedia.org/wiki/Accidental_%28music%29 
 

http://en.wikipedia.org/wiki/Staff_%28music%29
http://en.wikipedia.org/wiki/Key_signature
http://en.wikipedia.org/wiki/Accidental_%28music%29


 
Finally, looking that Circle of fifth if you're not sure about some key signatures: 

 
 

Problemsetter: Rujia Liu 
Special thanks: Yi Yang, Yao Li, Feng Chen 
 



 
 

Planning mobile robot on Tree (EASY 
Version) 

 
We are given a connected, undirected graph G on n vertices. There is a mobile robot on one of the 
vertices; this vertex is labeled s. Each of several other vertices contains a single movable obstacle. The 
robot and the obstacles may only reside at vertices, although they may be moved across edges. No 
vertex may ever contain more than one movable entity (robot or obstacles). 
 
In one step, we may move either the robot or one of the obstacles from its current position v to a 
vacant vertex adjacent to v. Our goal is to move the robot to a designated vertex t using the smallest 
number of steps possible. 
 
Let us call this graph motion planning with one robot, or GMP1R for short. In this problem, we restrict 
the graph G to be a tree, namely TMP1R. 
 
Here are some examples (gray circles represent obstacles). 
 
Example 1 (s=1, t=3): 

 
 
Move the obstacle 2-4, and then move the robot 1-2-3. Total: 3 moves. 
 
Example 2 (s=1, t=4): 

 
 
Move obstacle 2-5, then 3-2-6, and then move the robot 1-2-3-4. Total: 6 moves. 
 
Example 3 (s=1, t=5): 
 

 
 



 
Move the robot 1-6, then obstacle 2-1-7, then robot 6-1-2-8, then obstacle 3-2-1-6, then 4-3-2-1, and 
finally robot 8-2-3-4-5. Total: 16 moves. 
 

Input 
The first line contains the number of test cases T(T<=340). Each test case begins with four integers n, 
m, s, t(4<=n<=15, 0<=m<=n-2, 1<=s,t<=n, s!=t), the number of vertices, the number of obstacles and 
the label of the source and target. Vertices are numbered 1 to n. The next line contains m different 
integers not equal to s, the vertices containing obstacles. Each of the next n-1 lines contains two 
integers u and v (1<=u<v<=n), that means there is an edge u-v in the tree.  
 
Output 
For each test case, print the minimum number of moves k in the first line. Each of the next k lines 
contains two integers a and b, that means to move the robot/obstacle from a to b. If there is no solution, 
print -1. If there are multiple solutions, any will do. Print a blank line after each test case. 
 
Sample Input                                 Output for Sample Input 
3 
4 1 1 3 
2 
1 2 
2 3 
2 4 
6 2 1 4 
2 3 
1 2 
2 3 
3 4 
2 5 
2 6 
8 3 1 5 
2 3 4 
1 2 
2 3 
3 4 
4 5 
1 6 
1 7 
2 8 

Case 1: 3 
2 4 
1 2 
2 3 
 
Case 2: 6 
2 5 
3 2 
2 6 
1 2 
2 3 
3 4 
 
Case 3: 16 
1 6 
2 1 
1 7 
6 1 
1 2 
2 8 
3 2 
2 1 
1 6 
4 3 
3 2 
2 1 
8 2 
2 3 
3 4 
4 5 

 
Bonus 
You may find the sample data and special judge program in the gift package useful. 



 
 
Notes 
TMP1R can be solved in O(n4) time. That's overkill for this problem, but if you're interested, please 
take a look at this: 
 
Vincenzo Auletta , Domenico Parente , Pino Persiano, A New Approach to Optimal Planning of Robot 
Motion on a Tree with Obstacles, in Proc. of the 4-th European Symposium on Algorithms, 1996. 

 
Problemsetter: Rujia Liu 
Special thanks: Yubin Wang, Yao Li 



 
 

Qualle? Quale? 
 
If you speak German, you should know the first word in the title. If you speak Italian, you should 
know the second one :) 
 
Why I use these two words? Because I don't have better choices :( I want my problems' titles to start 
with A, B, C, etc. This is problem Q so it has to begin with the letter Q. 
 
Sometimes it's difficult. Each problem title has to tell people something about the problem itself, so it 
can't be arbitrary. If I can't find a suitable title in English, I have to try other languages like Chinese 
(for example, see the last three problems in Rujia Liu's Present 5 ^_^). 
 
Here is an example.  
 
No English French Chinese 
1 A B C 
2 D - B 
3 C B - 
4 E - E 
5 C A - 
 
The title of problem 1 in English starts with A, and the French version starts with B. The Chinese title 
of problem 1 starts with C. A hyphen means "N/A", so problem 2 doesn't have a French version. 
 
One possible combination is (note that each problem should be used exactly once):  
 
Problem A Problem 1 in English 
Problem B Problem 3 in French 
Problem C Problem 5 in English 
Problem D Problem 2 in English 
Problem E Problem 4 in Chinese 
 
Could you tell me all the possible language combinations? For each combination, all the languages in 
it must be used (i.e. You can't say the combination is {English,Chinese} if none of the problems 
actually used the Chinese version). 
 

Input 
The first line contains the number of test cases T(T<=500). Each test case begins with two integers n, 
m (3<=n<=26, 1<=m<=5), the number of problems and the number of languages. The next n lines 
contains the table containing the first m upper-case letters or '-'. The j-th column in the i-th row in the 
table is the first letter of the title in the j-th language. A special character '-' means that version does 
not exist. 
 
Output 
For each test case, print all possible combinations in a single line. Each combination is a string of 
languages used (languages are labeled 1 to m) in increasing order. Shorter combinations should come 
first. Combinations of the same length should be sorted in increasing order. If the problemset cannot 
be made, print -1. 



 
 
Sample Input      Output for Sample Input 
4 
5 3 
ABC 
D-B 
CB- 
E-E 
CA- 
3 2 
AB 
C- 
-C 
4 4 
-A-- 
BB-- 
--CC 
--D- 
3 4 
AAAA 
BBBB 
CCCC 

Case 1: 12 123 
Case 2: -1 
Case 3: 23 123 234 1234 
Case 4: 1 2 3 4 12 13 14 23 24 34 123 124 134 234 

 
Notes 
The judge input for this problem is randomly generated, so don't worry if your algorithm might fail on 
some deliberately hand-crafted test cases. 

 
Problemsetter: Rujia Liu 
Special thanks: Yubin Wang 
 


