

2012 ACM-ICPC Asia Hatyai

Regional Programming Contest – Online Version

18 November 2012

Onsite Contest was Hosted by Prince of Songkla University,

Hatyai Campus, Thailand

• There are 10 problems (A-J) to solve within 5 hours.

• Solve as many problems as you can, in an order of your choice.

• Use C or C++ or Java to program at your convenience for any problems.

• Input and output of each program are standard input and output.

Problem A Binary Matrix 2

Problem B Probability Through Experiments

Problem C Optimal Space Way

Problem D Radiation

Problem E Version Controlled IDE

Problem F Ultimate Device

Problem G Warp Speed II

Problem H

Problem I

Problem J

Birthdates

Prime Substring

Longest Word

ACM-ICPC Asia Hatyai Regional Programming Contest – November 16, 2012 – PSU, Hatyai 1

Problem A

Binary Matrix 2
Time Limit: 5 seconds

 You are given a matrix of size r x c. Each of the elements can be either 0 or 1. In each

operation you can flip any element of this matrix, i.e. convert 0 to 1 or convert 1 to 0. Your goal

is to convert the matrix such that -

1. Each of the rows will have the same number of 1s and

2. Each of the columns will have the same number of 1s.

What is the minimum number of operations required to achieve this?

Input:

Input starts with a positive integer T (~1000) which indicates the number of inputs.

Each case starts with two integers m and n (1 <= r, c <= 40), here r is the number of rows

and c is the number of columns of the matrix. Each of the next m lines will have n integers each,

either 0 or 1.

Output:

For each test case, output “Case #: R” in a single line, where # will be replaced by case

number and R will be replaced by the minimum number of steps required to achieve the target

matrix. Replace R by -1 if it is not possible to reach target matrix.

Sample Input:
3

2 3

111

111

3 3

011

011

011

2 3

001

000

Sample Output:
Case 1: 0

Case 2: 3

Case 3: 1

Problemsetter: Arifuzzaman Arif, Special Thanks: Rujia Liu, Jane Alam Jan

ACM-ICPC Asia Hatyai Regional Programming Contest – November 16, 2012 – PSU, Hatyai 2

Problem B

Probability Through experiment
Time Limit: 2 seconds

Mathematicians have often solved problems by just doing some simulation or experiments. For

example, the value of pi (π) can be approximately determined by randomly plotting points in a

square that inscribes a circle. Because if the square is a 250x250 square, then its area is 62500

and the area of the inscribed circle is pi*125
2
=15625pi. As the points are plotted randomly, so it

can be assumed that number of points inside the circle and total number points plotted in the

square is proportional to their respective area. So, in this way, the value of pi can approximately

be determined by counting how many points are inside the circle (Figure 1). The value of pi can

even be determined using a more sophisticated experiment like the Buffon’s needle experiment

(Figure 2).

The two experiments mentioned above to

approximately determine the value of pi could be

simulated by writing a computer program very

easily. It would have been nice to do this sort of

experiment a lot of time (Say 1 billion billion) and

get an almost perfect result but for lack of time we

cannot do that in real life. In this problem, you will

have to write a program that will help Professor Wu

to perform a similar sort of experiment but this

program may not be that straightforward.

Professor Neal Wu is trying to solve a classic

problem using simulation: If three points are

randomly plotted on the boundary of a circle, then

what is the probability that they will be the three

vertex of an acute triangle? Of course, this problem

can be solved analytically and the result he gets is

0.25. Now, he wants to verify this result through an

experiment. The result can be found approximately

by plotting three random points on a circle billions

of times and counting how many times these three

points form an acute triangle. The beauty of such an

experiment (as mentioned above) is that if we

increase the number of trials, the result will become

even more accurate. But if Dr. Wu wants to repeat

this process 1000 billion times, it will take 2 hours of

time and if he wants to repeat it a billion billion

times, it may take more than 200 years. Dr. Wu has

discovered that this process can be sped up by using

a different approach – generate n random points on the boundary of a circle and they form

6

)2)(1(−− nnn
 triangles as vertices. How many of these triangles are acute triangles? If the

number of acute triangle is M and let N =
6

)2)(1(−− nnn
, then the desired probability is

N

M
. So,

Figure 1: Pi approximation by counting

the number of points inside the circle

Figure 2: Buffon’s needle experiment

ACM-ICPC Asia Hatyai Regional Programming Contest – November 16, 2012 – PSU, Hatyai 3

given the n points on the boundary, you have to assist Dr. Wu by writing a very efficient

program to find the number of acute triangles.

Input
The input file contains around 40 test cases. But

most of the cases are not extreme, so the size of the

input file is around 3 MB. The description of each

test case is given below:

Each case starts with two positive integers n (0 < n

≤ 20000) and r (0 < r ≤ 500). Here, n is the total of

points on the circle boundary and r is the radius of

the circle. The center of the circle is always at the

origin (0,0). Each of the next N lines denotes the

location of one point on the boundary of the circle. Each point is P, denoted by a floating-point

number θ (0.000 ≤ θ < 360.000). This θ is actually the angle (expressed in degree) the point P

creates at the center of the circle with the positive direction of x-axis. So the Cartesian coordinate

of P is (r*cos(θ), r*sin(θ)). Value of θ will always have exactly three digits after the decimal

point. No two points will be at the same location.

A line containing two zeroes terminates the input. This line should not be processed.

Output
Each test case produces one line of output. This line contains the serial of output followed by an

integer. This integer denotes how many of the
6

)2)(1(−− nnn
 triangles formed by these n points

are actually acute triangles.

/* 20000 points generated on the boundary of a circle can actually create 20000*19999*19998/6

~1333 billion triangles. So, of experiment for 1333 billions can be done in, say, 0.5 second. Then

experiments with 1 billion billion triangles can be done in around 100 hours only (In contrast to

200 years mentioned earlier) just by repeating this experiment. Also, if we put 1817120 points on

the boundary of the circle, around 1 billion billion triangles are created, and the number of acute

triangles within this large number of triangles can be computed within 5 minutes. */

Sample Input Sample Output
4 71

234.600

33.576

20.375

84.908

7 7

11.586

114.435

248.411

108.640

287.629

150.224

340.481

0 0

Case 1: 2

Case 2: 12

Problemsetter: Shahriar Manzoor, Special Thanks: Derek Kisman

Figure 3: Example of a circle with given

points on the boundary

ACM-ICPC Asia Hatyai Regional Programming Contest – November 16, 2012 – PSU, Hatyai 4

Problem C

Optimal Space Way

Time Limit: 5 seconds

It is 2180 AD, the human race has just started to abandon the earth and spread the civilization in

space. ACM (Association for Cosmic Machinism) is in charge of this whole relocation process

and this process is funded mostly by IBM (Inter-planet Ballistic Machines). Thousands of space

cities are built in the outer space and to maintain universal business hour (Sunrises and sets at the

same time in all space cities) they are built on the same imaginary plane. So the location of the

cities can be expressed as two-dimensional Cartesian coordinates.

The cities are located far away from one another and the only way of going from one city to

another is by using shuttle rockets. But from previous experience ACM knows that traveling by

roads is a lot cheaper than traveling by rockets. So they have decided to build some roads. But

building roads between every pair of cities is very expensive. So they are planning to build a

super space-way (SSW) that will be a straight road. When someone needs to travel from a city c1

to city c2, he first travels from c1 to the nearest point of SSW with a rocket, and moves along the

SSW to the point, which is nearest to c2. Then from there he goes to c2 using another rocket.

The cost of moving along the road is proportional to the distance but cost of flying on rockets is

proportional to the square of the distance. So you have to build the SSW in such a position so

that total cost of traveling in a calendar year by rockets is minimized. You can assume that:

1. The cities are so small compared to the distance between them that they can be

considered as points on a two dimensional Cartesian coordinate system.

2. The SSW is so narrow compared to the distance between the cities that it can be

considered as a straight line. The length of the SSW can be increased indefinitely in both

directions if total cost of traveling by rocket decreases by doing so.

3. For simplicity you can assume that total number of incoming and outgoing rockets from

each city is the same.

4. Sometimes exactly one city can be marked as the super city, which is the center of all

activities. In that case the total of incoming and outgoing flights of that city is M times

higher than an ordinary city.

5. Assume that all rockets travel in straight line.

Given the location of all the cities, you will have to find a location for the SSW for which the

total cost of traveling by rockets is minimum. And you have to produce the minimum average

cost per rocket flight assuming that cost of flying v unit distance is v
2
.

Input

The input file contains less than 50 test cases. The description of each test case is given below:

Each test case starts with two integers N (0 < N ≤ 10000) and Q (0 < Q ≤ 100). Here N is the

total number cities built in outer space and Q is the total number of query. Each of the next N

lines contains two floating-point numbers, ii yx , (0.0 ≤ ii yx , ≤ 1000.0) which denotes the

coordinate of the i-th city. Cities are numbered from 0 to N-1 in the order they appear in the

input file. Each of the next Q lines contains two integers S (0 ≤ S ≤ N-1) and M (1 < M ≤ 10000).

Here S denotes the id of the super city and M denotes that its total number of incoming and

ACM-ICPC Asia Hatyai Regional Programming Contest – November 16, 2012 – PSU, Hatyai 5

outgoing flights in the super city is M times higher than an ordinary city.

A line containing two zeroes terminates the input. This line should not be processed.

Output
For each test case produce Q+2 lines of output. The first line contains the case number followed

by a colon. The second line contains a floating-point number which denotes the minimum

average cost per rocket flight for the optimal super space way (Assuming all cities are ordinary).

This line is followed by Q lines, one line for each query. This line contains the serial of query

followed by a floating-point number. This number denotes the minimum average cost for the

optimal super space way assuming that S th city is a super city and all other cities are ordinary.

All floating-point numbers in the output should have five digits after the decimal point. Look at

the output for sample input for details. You can assume that for all floating-point outputs an

absolute error less than 10-5 will be ignored.

Sample Input Output for Sample Input

5 2

464.9900 243.2652

463.9409 772.4632

201.9822 561.6255

695.8948 933.4567

226.0628 93.1435

3 2

4 3

4 2

27.1679 304.2512

27.7639 16.2479

921.9150 863.0064

167.6203 929.5471

2 2

2 3

0 0

Case 1:

16172.49971

1: 14289.23473

2: 11558.37654

Case 2:

53198.72595

1: 47995.33546

2: 41543.27604

Problemsetter: Shahriar Manzoor, Special Thanks: Derek Kisman

ACM-ICPC Asia Hatyai Regional Programming Contest – November 16, 2012 – PSU, Hatyai 6

Problem D

Radiation

Time Limit: 2 seconds

Nuclear power plants (NPP) are a blessing and curse of modern civilization. NPPs have some

risks but still it is one of the cheapest ways to produce electricity in the developed world. In this

problem we will discuss a situation related to two nuclear plants, which are not far away from

each other.

Figure 1: Two Nuclear Power Plants. Houses at (81, 49) and (77,33) are at high risk from

both the plants.

We will describe the entire scenario in a flat land, so two-dimensional Cartesian coordinate

system is used to denote each location. Lets assume that the coordinate of the two nuclear power

plants are (ax, ay) and (bx, by). Houses that are located within distance R1 (inclusive) of the

power plant at (ax, ay) are under high risk of radiation. Similarly, houses that are located within

distance R2 (inclusive) of the power plant at (bx, by) are under high risk of radiation. So the

authorities of power plant 1 and power plant 2 distribute special protective equipments to the

houses that are within radius (inclusive) R1 and R2 of the respective power plants. As a result

each of the houses that are endangered by both the plants actually receive two sets of equipments

to protect their house, however only one set is enough for full protection. Houses that are outside

the high-risk area are under low risk of radiation but they do not receive any protective

equipment due to budget constraints. However, each owner of the houses that have two sets of

protective equipments gives away one set of equipment to the owner of a house that has none.

Still, some houses in the low-risk area remain un-protected. Given the location of the houses and

the values of ax, ay, bx, by and possible values of R1 and R2 your job is to find out the number

ACM-ICPC Asia Hatyai Regional Programming Contest – November 16, 2012 – PSU, Hatyai 7

of houses that are without protective equipments for each pair of values of R1 and R2.

Input

The input file contains at most 3 test cases. The description of each test case is given below:

A test case starts with a line containing a positive integer N (0 < N ≤ 200000) that denotes the

number of houses that are under either low risk or high risk of radiation. Each of the next N lines

contains two integers xi, yi (0 ≤ xi, yi ≤ 20000) that denotes the coordinate of the i-th house. No

two houses are at the same location. The next line contains five integers ax, ay, bx, by and q (0 ≤

ax, ay, bx, by ≤ 20000, 0 <q ≤ 20000). The meaning of ax, ay, bx and by are given in the

problem statement. Here q denotes the total number of query. Each of the next q lines contains

two integers, which denote the values of R1 and R2 (0 < R1, R2 ≤ 13000) respectively.

A line containing a single zero terminates input. This line should not be processed.

Output

For each test case produce q+1 lines of output. The first line is the serial of output. For each

query (given value of R1 and R2) determine how many houses in the low risk region remains

without protective equipment. You may consider using faster IO as judge input file is large.

Sample Input Output for Sample Input

11

95 75

27 6

93 5

124 13

34 49

65 61

81 49

77 33

110 50

91 22

110 25

57 42 97 36 2

31 25

25 25

0

Case 1:

2

2

Note: First query in the sample input corresponds to Figure 1.

Problemsetter: Shahriar Manzoor, Special Thanks: Derek Kisman

ACM-ICPC Asia Hatyai Regional Programming Contest – November 16, 2012 – PSU, Hatyai 8

Problem E

Version Controlled IDE

 Time Limit: 8 seconds

Programmers use version control systems to manage files in their projects, but in these systems,

versions are saved only when you manually submit.

Can you implement an IDE that automatically saves a new version whenever you insert or delete

a string?

Positions in the buffer are numbered from 1 from left to right. Initially, the buffer is empty and in

version 0. Then you can execute 3 commands (vnow means the version before executing the

command, and L[v] means the length of buffer at version v):

1 p s: insert string s after position p(0<=p<=L[vnow], p=0 means insert before the start of the

buffer). s contains at most 1 and at most 100 letters.

2 p c: remove c characters starting at position p(p>=1, p+c<=L[vnow]+1). The remaining

charactesr (if any) will be shifted left, filling the blank

3 v p c: print c characters starting at position p(p>=1, p+c<=L[v]+1), in version v(1<=v<=vnow).

The first command is guaranteed to be command 1(insert). After executing each command 1 or

2, version is incremented by 1.

Input
There is only one test case. It begins with a single integer n (1<=n<=50,000), the number of

commands.

Each of the following n lines contains a command. The total length of all inserted string will not

exceed 1,000,000.

Output
Print the results of command 3, in order. The total length of all printed strings will not exceed

200,000.

Sample Input (no obfuscation)
6

1 0 abcdefgh

2 4 3

3 1 2 5

3 2 2 3

1 2 xy

3 3 2 4

Sample Output
bcdef

bcg

bxyc

ACM-ICPC Asia Hatyai Regional Programming Contest – November 16, 2012 – PSU, Hatyai 9

Obfuscation

In order to prevent you from preprocessing the command, we adopt the following obfuscation

scheme:

Each type-1 command becomes 1 p+d s

Each type-2 command becomes 2 p+d c+d

Each type-3 command becomes 3 v+d p+d c+d

Where d is the number of lowercase letter 'c' you printed, before processing this command.

After the obfuscation, the sample input would be:
6

1 0 abcdefgh

2 4 3

3 1 2 5

3 3 3 4

1 4 xy

3 5 4 6

This is the real input that your program will read.

Problemsetter: Rujia Liu, Special Thanks: Derek Kisman

ACM-ICPC Asia Hatyai Regional Programming Contest – November 16, 2012 – PSU, Hatyai 10

Problem F

Ultimate Device

 Time Limit: 10 seconds

Mr Tomisu Ghost is planning to build the ultimate device. He shared the idea with me but asked

me to keep it secret. So, I am not going through the functionalities of this great device and I also

do not want to describe the mechanisms to build it.

However, Mr Tomisu has planned to buy some circuits for this device from a local store and for

that he went to the store. He found that there were n types of circuits and each of the i
th

 circuits

has the burning cycle of ti seconds. burning cycle of a circuit means that if it’s used in the

device, it will enter to its burning state at every ti seconds. If there is any other circuit in the

device that is not in its burning state, then every circuit will survive and no damage will happen.

But if every circuit is at its burning state at that time, all will be burned out together and the

device will be malfunctioned.

For example, consider two circuits have the burning cycle of 3 and 5 seconds respectively and let

both of them are used in the device together. At 3rd second, circuit 1 will be in its burning state,

but since the other one is not in its burning state, it will survive. At 5th second, circuit 2 will be

in burning state while circuit 1 will not be in its burning state, thus circuit 2 will also survive. At

6th second circuit 1 will be in its burning state again, but survive for the same reason. Thus at

15th second both circuits will be in their burning state and burn out. If there are three circuits

with the burning cycle of 3, 4 and 5 seconds respectively and all of them are used together, they

will burn out at 60th second. But if the first two circuits are used only, then they will burn out at

12th second.

Now, Mr. Tomisu wants to go through all the circuits one by one. In front of every circuit, he

will flip a coin (assume that it's a fair coin). If it's a head he will select the circuit, otherwise he

will reject it. After visiting the n
th

 circuit he will have some selected circuits for his device. You

have to help him by calculating the expected lifetime of his device. If no circuit is selected, then

the lifetime of the machine is 0.

Input

Input starts with an integer T (≤ 100), denoting the number of test cases.

Each case starts with an integer n (1 ≤ n ≤ 100), where n denotes the number of circuits. The

next line contains n space separated integers, where the i
th

 integer denotes the burning cycle of

the i
th

 circuit, ti (1 ≤ ti ≤ 500). You may assume that all the burning cycles for a test case will be

distinct.

Output

For each case, print the case number first. Then print (r * 2
n
) modulo 10007, where r is the

expected lifetime of the device. If (r * 2
n
) is not an integer print "not integer" without the

quotes.

ACM-ICPC Asia Hatyai Regional Programming Contest – November 16, 2012 – PSU, Hatyai 11

Sample Input Sample Output

2
3

3 4 5
2
2 7

Case 1: 119

Case 2: 23

Problemsetter: Jane Alam Jan, Special Thanks: Towhidul Islam Talukder

ACM-ICPC Asia Hatyai Regional Programming Contest – November 16, 2012 – PSU, Hatyai 12

Problem G

Warp Speed II

 Time Limit: 16 seconds

In the not-so-distance future, space engineers can invent a new technology for traveling through

space and name it as “warp-drive”. This warp-drive can make a spaceship travel faster than light

speed. It works by bending an amount of distance in space and make a ship travel through that

bended space in a single “hop”. To travel through space, a spaceship (that is equipped with this

warp-drive) may have to perform more than one hop between the beginning and the ending

points. The amount of energy/power to hop depends on the current state/configuration of the

warp-drive. And some amount of energy is also consumed in order to prepare or switch to any

warp-drive state.

Goal

Suppose that you are an engineer on a battle spaceship. Your duty is to control/configure the

warp-drive so that it will consume as less energy as possible for any traveling. For each

traveling, you will be provided with a sequence of hops, which you have to find a corresponding

sequence of warp-drive configurations that use the lowest energy.

 In order to accomplish your duty, you have to build a computer program to find the

lowest energy of warp-drive configuration sequence for any given hop sequence based on two

tables of warp-driver energy consumptions. The first table shows the energy for switching

between any two states. The second table shows the energy consumption related to warp-drive

states and hops.

Input

Input is a standard input which consists of 4 parts, separated by a blank line.

The first part defines the sizes of warp-drive states and hop types.

• It contains of only one line. This line contains 2 numbers separated by a space. These 2

number are

o Size of warp-drive states(N), which is between 1 and 100.

� The state id is starting from 0 to N-1.

� The first state (id #0) is the idle state. At this and only this state, the warp-

drive can't perform any hop. (It is the default starting and ending state for any

output state sequence.)

o Size of different types of hops(H), which is between 1 and 1,000.

� The hop id from 0 to H-1.

The second part is a table showing the energy for switching warp-drive states. The table size is N

rows and N columns, which contains N
2
 energy values.

• There are N lines. Each line contains N energy values. These values are between 1 and 100.

• Each energy value can be indexed by its row and column. The row and column indexes are

the state ids of the current and next warp-drive states respectively. Please be notified that

these two indexes are starting from 0.

o For example, the value at (row index, column index) = (5,0) is the energy for

switching warp-drive state from number 5 to 0. (This value is the first number in the

sixth line.)

The third part is a table showing the energy consumption in performing hops for each state drive.

ACM-ICPC Asia Hatyai Regional Programming Contest – November 16, 2012 – PSU, Hatyai 13

The table size is N rows and H columns, which contains N by H values.

• There are N lines. Each line contains H energy values. These values are between 1 and

100.

• Each energy value can be indexed by its row and its column. The row index is the id of

the current warp-drive state. The column index is the id of the hop. Please be notified that

these two indexes are starting from 0.

o For example, the value at (row index, column index) = (1,9) is the energy for

warp-drive at state #1 to perform hop #9 . (This value is the tenth number in the

second line.)

o Please be notified that in the very first line of this part, which corresponds to the

state #0 or the idle state, all numbers are zeros. This rather means that it can't

perform any hop in this state.

The fourth part is a set of hop sequences. The number of sequences in this set is between 1 and

1,000.

• The number of lines is 1 up to 1,000.

• Each line in this part contains one hop sequences.

• The number of hops in a sequence is between 1 and 1,000.

• Each hop is a number (starting from 0 to H-1) and is separated with space.

The blank line after the fourth part is the termination of the input.

Output

For each hop sequence in the fourth part of the input, write 2 parts of output as follows

• In the first line, write the total amount of energy which must be minimum.

• In the following line, write the solution. The solution contains a sequence of warp-drive

states corresponds to the given hop sequence. (The size of input and output sequence

must be equal.) If there are two or more possible solutions which consumes the same

amount of energy, write only the sequence which contains the lowest states comparing

from left to right.

Line
no.

Sample Input Sample Output

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

4 5

1 2 6 1

3 4 3 17

2 3 9 3

1 21 1 8

0 0 0 0 0

3 3 2 4 3

2 2 4 3 1

4 2 2 7 7

0 4

1 2 3 2

9

3 2

23

1 1 2 3

More Explanations

There are 15 lines in the sample input and 4 lines in the sample output.

In the first sample output (solution for input line #13), the minimum total energy is 9. The warp-

drive state sequence is [3 2] or [0- 3 2 -0]. There are 3 state switchings from 0 → 3, 3 → 2, and 2

→ 0, which consumes 1 + 1 + 2 = 4. And two hops (0 and 4) at state 3 and 2 respectively, which

consumes 4 +1 = 5. So the total energy is 4 + 5 = 9.

In the last sample output, the minimum energy is 23. The solution is [0- 1 1 2 3 -0] which draws

23 energy in total.

Problemsetter: Chalathip Thumkanon

ACM-ICPC Asia Hatyai Regional Programming Contest – November 16, 2012 – PSU, Hatyai 14

Problem H

Birthdates
 Time Limit: 2 seconds

Write a program to identify the youngest person and the oldest person in a class.

Input

 The number n)1001(≤≤ n in the first line determines the number of people in a class.

The following n lines contain person’s name and his/her birthdate.

 The information in each line is of this format:

 personName dd mm yyyy

 where personName is a single word less than 15 letters, dd mm yyyy are date, month and

year of the birthdate.

 Suppose that no one has the same name or the same birthdate.

Output

 Print out 2 lines containing the name of youngest person and oldest person, respectively.

Sample Input
5

Mickey 1 10 1991

Alice 30 12 1990

Tom 15 8 1993

Jerry 18 9 1990

Garfield 20 9 1990

Sample Output
Tom

Jerry

Problemsetter: Seksun Suwanmanee

ACM-ICPC Asia Hatyai Regional Programming Contest – November 16, 2012 – PSU, Hatyai 15

Problem I

Prime Substring

 Time Limit: 10 seconds

Given a string of digits, your task is to find the largest prime number which presents in that

string. Our prime numbers are values between 2 to 100,000 only.

Input

Each line contains a string of digits (255 digits at most). The line contains only 0

indicates the end which will not be processed. The input does not exceed 1,000 lines.

Output

 Print out in each line the largest prime number found in each input string.

Sample Input Sample Output
11245

91321150448

1226406

0

11

1321

2

Problemsetter: Seksun Suwanmanee

ACM-ICPC Asia Hatyai Regional Programming Contest – November 16, 2012 – PSU, Hatyai 16

Problem J

Longest Word

Time Limit: 2 seconds

A word is composed of only letters of the alphabet (a-z, A-Z) and may contain one hyphen (-)

or more. Given a text containing words, and other characters (punctuations, numbers, symbols,

etc), you are to write a program to find the longest word.

 Each letter or a hyphen in a word is counted as 1. For example,

 The length of Apple is 5

 The length of son-in-law is 10

 The length of ACM-ICPC is 8

Input

A text may contain several lines and paragraphs but the text does not exceed 10,000

characters. No word can exceed 100 characters. The word E-N-D indicates the end of input.

Output

 Print out the longest word in small letters. If there exist several longest words, print only

the first one found in the text.

Sample Input

 ACM International Collegiate Programming Contest (abbreviated as

ACM-ICPC or just ICPC) is an annual multi-tiered computer programming

competition among the universities of the world. The contest is

sponsored by IBM. Headquartered at Baylor University, with autonomous

regions on six continents, the ICPC is directed by Baylor Professor

William B. Poucher, Executive Director, and operates under the

auspices of the Association for Computing Machinery (ACM).

The 2012 ACM-ICPC Asia Hatyai Regional Programming Contest is

held during 15-16 November 2012. It is hosted by Prince of Songkla

University, Hatyai campus. E-N-D

Sample Output

international

Problemsetter: Seksun Suwanmanee

