- Sentry Robots -

We need to guard a set of points of interest using sentry robots that can not move or turn. We can position a sentry at any position facing either north, south, east or west. Once a sentry is settled, it guards the points of interest that are infront of it. If two or more points are in
 the same row or column a single robot can guard them all. Unfortunately, there are also some obstacles that the robot cannot see through.

From a set of points of interest and obstacles lying on a grid, calculate the minimum number of robots needed to guard all the points. In order to guard a point of interest, a robot must be facing the direction of this point and must not be any obstacles in between.

Given the following grid, where \# represents an obstacle and * a point of interest, the minimum number of robots needed is 2 (a possible position and orientation is shown using arrows for each robot). Note that this is not the actual input or output, just a figure.

For the following grid we need 4 robots because of the obstacles.

Grid	Solution
* *	. \rightarrow *
* \# *	. \uparrow \# \uparrow
\# *	. \# \downarrow
. *	- . *

INPUT

The first line of the input has an integer C representing the number of test cases that follow. Before each test case there is an empty line.

For each case, the first line has 2 integers, Y and X, representing the height and width of the grid. The next line has an integer that indicates the number of points of interest P. The following P lines will have the positions $p y$ and $p x$ of the points of interest, one point per line. The next line has an integer that indicates the number of obstacles W. The following W lines will have the positions $w y$ and $w x$ of an obstacle, one per line.

OUTPUT

For each test case print the minimum number of robots needed to guard all the points of interest, one per line.

CONSTRAINTS

$1 \leq C \leq 50$
$1 \leq Y, X \leq 100$
$0 \leq P \leq Y \times X$
$0 \leq W \leq Y \times X$
$0 \leq P+W \leq Y \times X$
$1 \leq p x, w x \leq X$
$1 \leq p y, w y \leq Y$
INPUT EXAMPLE
OUTPUT EXAMPLE
2
2
4
46
4
22
24
42
44
3
23
33
43

45
6
12
13
24
22
33
43
2
23
32

