Problem J

Words

Given two sets of words formed by zeros and ones, you must write a program to determine if there are concatenations of words of each of the sets that generate the same word. For example, if a set A contains the words 010 and 11 and another set B contains the words 0 and 101, then the word $01,011,010$ can be formed both by concatenating words of A and by concatenating words of B.

$$
010 \cdot 11 \cdot 010=01011010=0 \cdot 101 \cdot 101 \cdot 0
$$

Input

The input contains several test cases. The first line of a test case contains two integers, N_{1} and N_{2}, which indicate respectively the number of words in the first and the number of words in the second sets. Each of the following N_{1} lines contains a word of the first set. Each of the following N_{2} lines contains a word of the second set.

Output

For each test case your program must print a single line, containing a single character. If it is possible to find a concatenation of one or more words of the first set that is equal to a concatenation of one or more words of the second set then the character must be S, otherwise the character must be N.

Restrictions

- $1 \leq N_{1}, N_{2} \leq 20$
- Each word has at least one and at most 40 characters, all zeros and ones.

Example

Sample input	Sample output
22	S
010	N
11	S
0	
101	
31	
1	
00	
000	
01	
11	
00	
000	

