Problem I

Integral

Arquivo: integral.[c/cpp/java]

Given a positive integer n, denote by [n] the interval $\{x: 0 \le x \le n\}$ of real numbers. Consider a function $f: [n] \Rightarrow \mathcal{R}$. Values of f are provided on a subset S of [n], thereby partially specifying f. The set S satisfies the following properties:

- 1. The points in S are all integers.
- 2. The extremes 0 and n of [n] are both in S.

The function f satisfies the following properties:

- 1. The values of f in the integral points of [n] are integers.
- 2. For every integral point x in $[n] \setminus S$ (ie, the integral points of [n] are not in S), the function f is monotonic in the interval [x-1,x+1]. In other words, at least one of the inequalities $f(x-1) \le f(x) \le f(x+1)$ and $f(x-1) \ge f(x) \ge f(x+1)$ is satisfied.
- 3. For each non-integral point x in [n], the value of f(x) is given by the linear interpolation of $f(\lfloor x \rfloor)$ and $f(\lceil x \rceil)$, ie, $f(x) = (x \lfloor x \rfloor)f(\lfloor x \rfloor) + (\lceil x \rceil x)f(\lceil x \rceil)$.

We still have the freedom of specifying the values of f in the integral points of $[n] \setminus S$ (note however that S can contain all the integral points of [n]). We would like to use this flexibility to make $\int_0^n f(x)dx = y$, i.e., the area under f(x) between the extremes 0 and n equal to y, a given value.

Your problem then is to decide whether this is possible or not.

Input

The input contains several test cases. The first line of a test case contains three integers, N, M and Y, respectively the amplitude of the interval, the size of S and the value of y. Each of the following M lines describes function f at a point of S, containing two integers X and F, representing f(X) = F. The values of X are not necessarily in ascending order.

Output

For each test case, determine whether there is a value assignment to f(x) for each integral point $x \in [n] \setminus S$ such that $\int_0^n f(x)dx = y$, i.e. the area under f(x) between the ends 0 and n is equal to y. If not, your program should print a line containing only the character 'N'. If the assignments are possible, your program should print a line containing the character 'S', followed by values of f(x) for the integral points x in $[n] \setminus S$, in increasing order of the values of x. The initial character and following values, if any, should be separated by a blank space. If more than one solution is possible, then print the lexicographically smallest solution.

Restrictions

- $1 \le N \le 10^6$
- $0 \le X \le N$, X integer, $\forall X \in S$
- $0 \le F \le 10^6$, F integer

- $0 \le Y \le 10^9$, Y integer
- $\int_0^n f(x)dx \le 10^9$ for any assignment of values to f(x) for $x \in [n] \setminus S$ satisfying the stated constraints.

Examples

Sample input	Sample output
5 6 10	S
0 2	S 0 0 0 5
1 2	N
5 2	S 2 2 2 2 2 1 1 1
2 2	N
3 2	
4 2	
5 2 10	
0 0	
5 10	
2 2 5	
0 1	
2 2	
10 3 18	
0 2	
6 4	
10 0	
2 2 1	
0 0	
2 1	