

Just Some Permutations

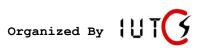
Dexter considers a permutation of first N positive numbers (1, 2, ... N) beautiful if all the absolute differences between **adjacent numbers** in the permutation are distinct.

So for N=4: $\{3, 2, 4, 1\}$ is a **beautiful** permutation because the absolute differences are $\{1, 2, 3\}$. But $\{3, 1, 4, 2\}$ is not **beautiful** since the absolute differences $\{2, 3, 2\}$ are not distinct.

Given **N** and **K** find the lexicographically **K**-th smallest beautiful permutation of the first **N** positive numbers. A permutation of **N** numbers $A_{1}, A_2, ..., A_n$ is lexicographically smaller than another permutation $B_1, B_2, ..., B_n$ if $A_i < B_i$ for some **i** and $A_i = B_i$ for all **j**<**i**.

Input

First line of the input contains an integer $T(\le 1000)$ which is the number of test cases. Each of the next T lines contain two space separated integers N ($1 \le N \le 20$) and K($1 \le K \le 10^{9}$).


Output

For each test case output the case number and then N space separated integers which is the lexicographically K-th smallest beautiful permutation of first N positive numbers. If there are less than K beautiful permutations then output "-1". See sample output for exact formatting.

Sample Input	Sample Output
4	Case 1: 1 5 2 4 3
5 1	Case 2: 2 3 5 1 4
5 2	Case 3: 3 2 4 1 5
5 4	Case 4: -1
5 10	

Problemsetter: Tasnim Imran Sunny

Special Thanks: Mir Wasi Ahmed

