A Dangerous Maze (II)

You are in a maze; seeing \mathbf{n} doors in front of you in beginning. You can choose any door you like. The probability for choosing a door is equal for all doors.

If you choose the $\mathbf{i}^{\text {th }}$ door, it can either take you back to the same position where you begun in $\mathbf{x}_{\mathbf{i}}$ minutes, or can take you out of the maze after $\mathbf{x}_{\mathbf{i}}$ minutes. If you come back to the same position, you can remember last \mathbf{K} doors you have chosen. And when you are about to choose a door, you never choose a door that is already visited by you. Or we can say that you never choose a door that is visited as one of the last \mathbf{K} doors. And the probability of choosing any remaining door is equal.

Now you want to find the expected time to get out of the maze.

Input

Input starts with an integer $\mathbf{T}(\mathbf{\leq 1 0 0})$, denoting the number of test cases.
Each case contains a blank line and two integers $\mathbf{n} \mathbf{K}(1 \leq n \leq 100,0 \leq K \leq n)$. The next line contains \mathbf{n} space separated integers. If the $\mathbf{i}^{\text {th }}$ integer $\left(\mathbf{x}_{\mathbf{i}}\right)$ is positive, you can assume that the $\mathbf{i}^{\text {th }}$ door will take you out of maze after \mathbf{x}_{i} minutes. If it's negative, then the $\mathbf{i}^{\text {th }}$ door will take you back to the beginning position after $\mathbf{a b s}\left(\mathbf{x}_{\mathbf{i}}\right)$ minutes. You can safely assume that $\mathbf{1} \leq \boldsymbol{\operatorname { a b s }}\left(\mathbf{x}_{\mathbf{i}}\right) \leq \mathbf{1 0 0 0 0}$.

Output

For each case, print the case number and the expected time to get out of the maze. If it's impossible to get out of the maze, print ' -1.000 '. Otherwise print the result rounded to three places after the decimal point. Add $1 \mathbf{0}^{-9}$ to your result to avoid precision errors.

Sample Input	Output for Sample Input
4	Case 1: 10.000
20	Case 2: 20.000
1010	Case 3: 30.000
20	Case 4: 25.000
$10-10$	
3 1 $10-10-20$ 3 2 $10-10-20$	

[^0]
[^0]: Problem Setter: Jane Alam Jan, Special Thanks: Md Mahbubul Hasan

