Speed Zones

Suppose you are in a 2-Dimensional world. Now, you are in a system of ' \mathbf{N} ' parallel zones of same or different speed, numbered from $\mathbf{0}$ to $\mathbf{N}-\mathbf{1}$. In each zone you can move in some given constant speed ($\mathbf{S}_{\mathbf{i}}$ amount per second in i-th zone) at any direction. Each zone is parallel to \mathbf{X} axis, starting from the \mathbf{X} axis (and then on the positive \mathbf{X} and positive \mathbf{Y} part only). Width of each zone is $\mathbf{1 0 0}$ (along the \mathbf{Y} axis).

You are currently in the origin $(\mathbf{0}, \mathbf{0})$. You need to reach $(\mathbf{1 0 0} \mathbf{*} \mathbf{N}, \mathbf{D})$ coordinate. But, you want to do that in minimum possible time (seconds).

Here is an example with $\mathbf{N}=4$, and $\mathbf{D}=\mathbf{3 5 0}$. The arrows show a possible path from $(\mathbf{0}, \mathbf{0})$ to $(400,350)$. Note that after the end of each zone (except the last one), it is possible that you may be in an non-integer ' X ' coordinate.

Given \mathbf{N}, \mathbf{D}, and the speeds $\mathbf{S}_{0}, \mathbf{S}_{1}, \mathbf{S}_{\mathbf{2}}, \ldots, \mathbf{S}_{\mathrm{N}-1}$ you will need to find the minimum possible time in seconds to reach the destination point.

Input

Input starts with an integer $\mathbf{T}(\leq \mathbf{5 0})$, denoting the number of test cases.
Each case contains two lines. In the first line you will be given two integers $\mathbf{N}(\mathbf{1} \leq \mathbf{N} \leq \mathbf{1 0 0})$ and \mathbf{D} ($\mathbf{0} \leq \mathrm{D} \leq \mathbf{1 0 0 0 0})$. In the second line you will be given \mathbf{N} integers, the speeds, in the order: $\mathrm{S}_{0}, \mathrm{~S}_{1}, \mathrm{~S}_{2}$, $\ldots, \mathrm{S}_{\mathrm{N}-1}$. For all $0 \leq \mathrm{i}<\mathrm{N}, 1 \leq \mathrm{S}_{\mathrm{i}} \leq 1000$.

Output

For each test case, generate one line of output, in the format "Case <case-no>: <answer>". Here case-no is the case number starting from 1, and answer is the minimum possible time in seconds. Your output should not differ more than $\mathbf{1 0}^{-6}=\mathbf{0 . 0 0 0 0 0 1}$. You should print at least $\mathbf{8}$ digits after the decimal point for answer.

Sample Input	Output for Sample Input
2	Case 1: 2.00000000
10	Case 2: 50.00000000
50	
3400	
101010	

[^0]
[^0]: Problem Setter: Shahriar Rouf Nafi, Special Thanks: Tanaeem M Moosa

