Superb Sequence

There were three friends (Alice, Bob and Carol) who regularly went to expeditions and discovered new mountain peaks. They often proposed different names and it was a problem to decide which name they would choose for the newly discovered peaks. Alice and Bob both said that the name of the peak must be a super sequence of their proposed names \mathbf{A} and \mathbf{B}, i.e. \mathbf{A} and \mathbf{B} should be subsequences of the name of the peak. Carol said that the name of the peak must be a subsequence of her proposed name \mathbf{C}. As they don't like long names, they want to know the number of distinct shortest names which satisfy their needs.

So, given three strings \mathbf{A}, \mathbf{B} and \mathbf{C}, you have to find the number of distinct shortest common super sequences of \mathbf{A} and \mathbf{B} who are also a subsequence of \mathbf{C}. Moreover, you need to find the lexicographically earliest such sequence. Two sequences are distinct if they differ in at least one position. A subsequence is a sequence obtained by deleting zero or more characters from a string. A super-sequence is a sequence obtained by inserting zero or more characters in one or more positions of the string.

For example, say, $\mathbf{A}=$ "cdfa", $\mathbf{B}=$ "dga" and $\mathbf{C}=$ "bcdfgaga". Then there are two shortest common super sequences of \mathbf{A} and \mathbf{B} : "cdfga" and "cdgfa", but "cdgfa" is not a subsequence of C. So the only possible name for the peak is "cdfga".

Input

The first line of input will contain $\mathbf{T}(\mathbf{\leq 2 5 0})$ denoting the number of cases.
Each case contains three lines. First line contains a string denoting \mathbf{A}, second line contains \mathbf{B} and third line contains \mathbf{C}. Assume that the strings are non-empty and length of \mathbf{A} and \mathbf{B} will not be more than $\mathbf{1 0 0}$ and length of \mathbf{C} will not be more than $\mathbf{3 0 0}$.

Output

For each case, print the case number and the number of distinct possible shortest names for the peak modulo 1000000007 . And second line should contain the lexicographically earliest name. If no solution is found then print "NOT FOUND" in second line.

Sample Input	Output for Sample Input
2	Case 1: 1
cdfa	cdfga
dga	Case 2: 0
bcdfgaga	NOT FOUND
abc	
defm	
abcdfghm	

[^0]
[^0]: Problem Setter: Anindya Das, Special Thanks: Jane Alam Jan

