Farey Polygon

In mathematics, the Farey sequence of order \mathbf{n} is the sequence of completely reduced fractions between 0 and 1 which, when in lowest terms, have denominators less than or equal to \mathbf{n}, arranged in order of increasing size. Each Farey sequence starts with the value 0 , denoted by the fraction $0 / 1$, and ends with the value 1, denoted by the fraction $1 / 1$ (taken from Wikipedia). For this problem we append a fraction $0 / 0$ at the beginning of each series. So, the modified Farey sequences of order 1 to 8 are given below:
$F_{1}=\left\{\frac{0}{/ 0}, \frac{0}{1}, 1 / 1\right\}$
$F_{2}=\left\{\frac{0}{0}, 0 / 1,1 / 2,1 / 1\right\}$
$F_{3}=\{0,0,1,1 / 3,1 / 2,2 / 3,1 / 1\}$
$F_{4}=\left\{\frac{0}{1}, 0 / 1,1 / 4,1 / 3,1 / 2,2 / 3,3 / 4,1 / 1\right\}$
$F_{5}=\{0 / 0,0 / 1,1 / 5,1 / 4,1 / 3,2 / 5,1 / 2,3 / 5,2 / 3,3 / 4,4 / 5,1 / 1\}$
$F_{6}=\{0,0,1 / 1,1 / 6,1 / 5,1 / 4,1 / 3,2 / 5,1 / 2,3 / 5,2 / 3,3 / 4,4 / 5,5 / 6,1 / 1\}$
$F_{7}=\{0 / 7,1 / 1,1 / 7,1 / 6,1 / 5,1 / 4,2 / 7,1 / 3,2 / 5,3 / 7,1 / 2,4 / 7,3 / 5,2 / 3,5 / 7,3 / 4,4 / 5,5 / 6,6 / 7,1 / 1\}$
$F_{8}=\{1 / 0,1 / 1,1 / 8,1 / 7,1 / 6,1 / 5,1 / 4,2 / 7,1 / 3,3 / 8,2 / 5,3 / 7,1 / 2,4 / 7,3 / 5,5 / 8,2 / 3,5 / 7,3 / 4,4 / 5,5 / 6,6 / 7,7 / 8,1 / 1\}$
Now we can represent each fraction \mathbf{p} / \mathbf{q} as a point (\mathbf{q}, \mathbf{p}) in the Cartesian plane. If we connect these points in the same order of Farey sequence (additionally the last one is connected to the first) we get a polygon. In this problem such a polygon will be called Farey Polygon of magnification 1. For example if we plot the fractions of \mathbf{F}_{4} in Cartesian plane and connect them in the same order as they are in the Farey sequence we get a Farey polygon of order four and magnification 1. This polygon is shown in Figure 1 (see the next page).

By multiplying the coordinates of vertices of Farey Polygon of order \mathbf{n}, and magnification 1 with an integer \mathbf{m} (and of course then connecting them) we get a Farey Polygon of order \mathbf{n} and magnification m. For example in Figure 2 we see a Farey Polygon of order 4 and magnification 2. The number of lattice points inside this polygon is $\mathbf{5}$. Given the number of lattice points inside a lattice polygon, you will have to find its order and magnification.

Input

The input file contains 12000 lines of inputs. Each line contains a non-negative integer \mathbf{I}, which denotes the number of lattice points inside the Farey Polygon. The value of \mathbf{I} does not exceed $\mathbf{1 0}^{\mathbf{1 6}}$. Input is terminated by a line containing -1. This line should not be processed.

Output

For each line of input produce one line of output. This line may contain two positive integers \mathbf{n} and \mathbf{m} that indicates the order and magnification respectively of the Farey Polygon, that has exactly \mathbf{I} lattice points inside it. If there is more than one answer produce the one that has the minimum
positive \mathbf{n}. If there is still a tie choose the minimum positive \mathbf{m}. If no such Farey Polygon is found whose order and magnitude is less than 15001, then print the line "NOT FOUND" (Without the quotes) instead.

Sample Input	Output for Sample Input
5	$4 \quad 2$
1	1
100	2
102	NOT FOUND
-1	

Figue 1: Farey Polygon of order 4
and magnification 1

Problem Setter: Shahriar Manzoor, Special Thanks: Derek Kisman

