B

Infinite Stable Integer

For any infinite-length decimal integer $S = d_1d_2d_3d_4...$ (0 d_i 9, i 1), let $\mathbf{prefix}(S,p)$ be the integer formed by the first \mathbf{p} digits of S (i.e. $d_1d_2d_3...d_p$), and F(S,i,p) be the percentage of digit i in $\mathbf{prefix}(S,p)$. For example, if S = 122312231223..., $F(S,2,7) = \frac{4}{7}*100$

We say S is stable if and only if every for digit i ($0 \le i \le 9$), there exists a real number L(i) such that

$$\lim_{p\to\infty} F(S,i,p) = L(i)$$

Given three positive integers M, X and Y (0<=X<=Y<M), and 10 pairs of integers (A(0), B(0)), (A(1),B(1)), ..., (A(9),B(9)), find an infinite stable integer S such that:

- 1. Every L(i) satisfies A(i) L(i) B(i)
- 2. For every integer p 1, X (prefix(S, p) mod M) Y.

If there are more than one solution, maximize the average value of all the digits in S. Since S is stable, it can be proven that the average value converges.

For example, if M=9, X=1 and Y=8, B(3)=B(4)=100, all other A(i) and B(i) are zero, then the optimal S is $44(4444443)^*$, where * means "repeated forever". It's not hard to see that prefix(S,p) will never be a multiple of P0, and P100, P100, P100, all other P100.

Input

There will be multiple test cases. Each test case contains 23 integers: M, X, Y, A(0), A(1), ..., A(9), B(0), B(1), ..., B(9). 2 M 50, 0 X Y < M, 0 A(i) B(i) 100.

Output

For each test case, print case number and the maximal average value rounded to 8 decimal places. If no infinite stable integer can be found, print "NO SOLUTION" instead. Look at the output for sample input for details.

Sample Input														
2	1	1	0	0	0	0	0	0	0	0	0	0 20 20 20 20 20 20 20 20 20 20		
9	1	8	0	0	0	0	0	0	0	0	0	0 0 0 0 100 100 0 0 0 0		
8	0	7	1	1	1	1	1	1	1	1	1	1 2 2 2 2 2 2 2 2 2 2		
19	2	3	0	0	0	0	0	0	0	0	0	0 100 100 100 100 100 100 100 100 100 1)	
Output for Sample Input														
Case 1: 5.00000000														
Cas	Case 2: 3.85714286													

Case 4: 1.00000000

Case 3: NO SOLUTION

Problemsetter: Bin Jin, Rujia Liu