

C - Central Post Office

One of the post services companies in a country plans to designate one of its branches as the central office. The company has a branch in each and every city in the country. The cities are so connected by roads that to go from any city to another, there is a unique sequence of roads to take. The central office is in charge of dispatching parcels to all other branches. For this purpose, a car is used that starting from the central office goes through all cities to the last one delivering their parcels. As time is always a top priority in post services, the company's administration wants a designation which minimizes dispatching times. If the car travels the distance between any two adjacent cities in one hour, calculate the minimum total dispatching time $T_{\rm m}$, considering the optimal designation.

Input

The first line of input contains an integer T \leq 100 denoting the number of test-cases. Each test-case begins with an integer $1\leq$ N \leq 10,000 denoting the number of cities (numbered from 1 to N) of the country, on a separate line. The ith line of the following N lines starts with the number M_i of the cities adjacent to the ith city followed by M_i integers, the neighboring city indexes.

Output

For each test-case, output on a single line the minimum dispatching time T_m.

Sample Input	Sample Output
2	1
2	5
12	
11	
5	
3 2 3 4	
11	
215	
11	
13	