	818 8 (Input: Standard Input Output: Standard Output	

In python, we can use len(start(a[L:R])) to calculate the number of distinct values of elements $a[L], a[L+1], \ldots, a[R-1]$.

Here are some interactive examples that may help you understand how it is done. Remember that the indices of python lists start from 0 .

```
>>> a=[1,2,1,3,2,1,4]
>>> print a[1:6]
[2, 1, 3, 2, 1]
>>> print set(a[1:6])
set([1, 2, 3])
>>> print len(set(a[1:6]))
3
>>> a[3]=2
>>> print len(set(a[1:6]))
2
>>> print len(set(a[3:5]))
1
```

Your task is to simulate this process.

Input

There will be only one test case. The first line contains two integers n and $m(1 \leq n, m \leq 50,000)$. The next line contains the original list.

All the integers are between 1 and $1,000,000$ (inclusive). The next m lines contain the statements that you need to execute.

A line formatted as "M x y" $(1 \leq y \leq 1,000,000)$ means " $\mathrm{a}[\mathrm{x}]=\mathrm{y}$ ", and a line formatted as "Q x y" means "print len(set(a[x:y]))".

It is guaranteed that the statements will not cause "index out of range" error.

Output

Print the simulated result, one line for each query.

Output for Sample Input

7	4				3	
1	2	1	3	2	1	4
Q	1	6				2
M	3	2				1
Q	1	6				
Q	3	5				

