

Arithmancy is one of the most favorite subjects of Hermione Granger, the most intelligent witch of her generation. She was thinking about the last homework given by Professor Vector:

A peculiar magical creature can live in a rectangle drawn into a $\mathrm{n}^{*} \mathrm{n}$ square grid if and only if the rectangle is not a square and its sides are parallel to the major axes. Same conditions hold for higher dimensions (yes, the peculiar creature can even be 2500 -dimensional!!!), i.e. if the sides parallel to the major axes are all equal, it cannot live inside the hyper box. For example, in a 3-dimensional grid, it can live inside a $2 * 2 * 3$ or a $3 * 4 * 5$ box, but it cannot live inside a $5 * 5 * 5$ cube!! In how many ways one can draw a k-dimensional hyper box inside a $n * n^{*} . .$. nn(k times n) grid so that the peculiar creature can live inside the hyper box? A way is different from another way if at least one co-ordinate of one corner is different. For example, in a $4 * 4$ grid, $\{(0,0),(0,3),(2,3),(2,0)\},\{(1,0),(1,3),(3,3),(3,0)\}$ and $\{(0,0),(0,3),(4,3),(4,0)\}$ are 3 different ways but $\{(0,0),(0,3),(2,3),(2,0)\},\{(0,3),(2,3),(2,0),(0,0)\}$ and $\{(2,3),(2,0),(0,0),(0,3)\}$ are not different.

Hermione is quite confident of solving it, but she has to go now to the Room of Requirement with Harry and Ron for a secret meeting. Your task is to write a program that solves the problem for Hermione.

Input

The first line contains a single integer $\mathbf{T}(\mathbf{T} \leq \mathbf{5 , 0 0 0})$ which denotes the number of test cases. Each of the following T lines contains two integers, $\mathbf{n}\left(\mathbf{1} \leq \mathbf{n} \leq \mathbf{1 0} \mathbf{0}^{\mathbf{9}}\right)$ and $\mathbf{k}(\mathbf{2} \leq \mathbf{k} \leq \mathbf{2 5 0 0})$.

Output

For each test case, output a single integer in each line which is the number of ways to draw kdimensional axis-parallel hyper boxes in an $\mathbf{n} * \mathbf{n} * \ldots . . . \mathbf{n}$ grid. As this number can be quite large, output the answer mod $1,000,000,007\left(10^{9}+7\right)$.

Sample Input

Output for Sample Input

2
3
2

32
4

