

Problem C Fun Coloring

Consider the problem called FUN COLORING below.

FUN COLORING PROBLEM

INSTANCE: A finite set U and sets $S_1, S_2, S_3, \dots, S_m \subseteq U$ and $|S_i| \leq 3$.

PROBLEM: Is there a function $f: U \mapsto \{\text{RED}, \text{BLUE}\}$ such that at least one member of each S_i is assigned a different color from the other members?

Given an instance of FUN COLORING PROBLEM, your job is to find out whether such function f exists for the given instance.

Input

In this problem $U = \{x_1, x_2, x_3, ..., x_n\}$. There are k instances of the problem. The first line of the input file contains a single integer k and the following lines describe k instances, each instance separated by a blank line. In each instance the first line contains two integers n and m with a blank in between. The second line contains some integers *i*'s representing x_i 's *in* S_1 , each *i* separated by a blank. The third line contains some integers *i*'s representing x_i 's *in* S_2 and so on. The line m+2 contains some integers *i*'s representing x_i 's *in* S_2 and so on. The line m+2 contains some integers *i*'s number of the second instance of the problem is described in the same manner and so on until the kth instance is described. In all test cases, $1 \le k \le 13$, $4 \le n \le 22$, and $6 \le m \le 111$.

Output

For each instance of the problem, if f exists, print a Y. Otherwise, print N. Your solution will contain one line of k Y's (or N's) without a blank in between. The first Y (or N) is the solution for instance 1. The second Y (or N) is the solution for instance 2, and so on. The last Y (or N) is the solution for instance k.

Sample input	Sample output
2	YN
5 3	
1 2 3	
2 3 4	
1 3 5	
77	
1 2	
1 3	
4 2	
4 3	
2 3	
1 4	
5 6 7	