2ch $\begin{aligned} & \text { International Collegiate } \\ & \text { Programming Contest }\end{aligned}$
Problem C
Fun Coloring

Consider the problem called FUN COLORING below.
FUN COLORING PROBLEM
INSTANCE: A finite set U and sets $S_{1}, S_{2}, S_{3}, \ldots, S_{m} \subseteq U$ and $\left|S_{i}\right| \leq 3$.
PROBLEM: Is there a function $f: U \mapsto\{$ RED, BLUE $\}$ such that at least one member of each S_{i} is assigned a different color from the other members?
Given an instance of FUN COLORING PROBLEM, your job is to find out whether such function f exists for the given instance.

Input

In this problem $U=\left\{x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right\}$. There are k instances of the problem. The first line of the input file contains a single integer k and the following lines describe k instances, each instance separated by a blank line. In each instance the first line contains two integers n and m with a blank in between. The second line contains some integers i 's representing x_{i} 's in S_{1}, each i separated by a blank. The third line contains some integers i 's representing x_{i} 's in S_{2} and so on. The line $m+2$ contains some integers i 's representing x_{i} 's in S_{m}. Following a blank line, the second instance of the problem is described in the same manner and so on until the $k^{\text {th }}$ instance is described. In all test cases, $1 \leq k \leq 13,4 \leq n \leq 22$, and $6 \leq m \leq 111$.

Output

For each instance of the problem, if f exists, print a Y. Otherwise, print N. Your solution will contain one line of k Y's (or N's) without a blank in between. The first $\mathrm{Y}(\mathrm{or} \mathrm{N})$ is the solution for instance 1. The second $\mathrm{Y}(\operatorname{or} \mathrm{N})$ is the solution for instance 2, and so on. The last $\mathrm{Y}(\operatorname{or} \mathrm{N})$ is the solution for instance k.

		Sample input	Sample output
2			YN
5	3		
1	2	3	
2	3	4	
1	3	5	
7	7		
1	2		
1	3		
4	2		
4	3		
2	3		
1	4		
5	6	7	

