

Problem A Water Gate Management

A dam has n water gates to let out water when necessary. Each water gate has its own capacity, water path and affected areas in the downstream. The affected areas may have a risk of flood when the water gate is open. The cost of potential damage caused by a water gate is measured in number calculated from the number of people and areas estimated to get affected.

Suppose a water gate G_i has the volumetric flow rate of F_i m³/hour and the damage cost of C_i . In a certain situation, the dam has the volume V m³ of water to flush out within T hours. Your task is to manage the opening of the water gates in order to get rid of *at least* the specified volume of water within a limited time in condition that the damage cost is minimized. For example, a dam has 4 water gates and their properties are shown in the following table.

Water Gate	G ₁	G ₂	G ₃	G ₄
Flow rate (m ³ /hour)	720,000	50,000	130,000	1,200,000
Cost	120,000	60,000	50,000	150,000

Case 1: You have to flush out the water 5 million m^3 within 7 hours. The minimum cost will be 120,000 by letting the water gate G1 open for 7 hours.

Case 2: You have to flush out the water 5 million m^3 within 30 hours. The minimum cost will be 110,000 by letting the water gates G_2 and G_3 open, for example, G_2 is open for 29 hours and G_3 is open for 28 hours.

Note that each water gate is independent and it can be open only in a unit of whole hour (no fraction of hour).

Input

The first line includes an integer *n* indicating number of water gates $(1 \le n \le 20)$. Then the next *n* lines contain, in each line, two integers: F_i and C_i corresponding to the flow rate (m³/hour) and the damage cost of the water gate G_i respectively. The next line contains the number *m* which is the number of test cases $(1 \le m \le 50)$. The following *m* lines contain, in each line, two integers: *V* and *T* corresponding to the volume (m³) of water to let out within *T* hours. $1 \le F_i$, *V*, $C_i \le 10^9$, $1 \le T \le 1000$)

Output

For each test case, print out the minimum cost in the exact format shown in the sample output below. If it is **not** possible to let out the water of volume V in T hours from the dam, print out "IMPOSSIBLE" (without quotation marks).

Sample input	Sample output		
4	Case 1: 120000		
720000 120000	Case 2: 110000		
50000 60000	Case 3: IMPOSSIBLE		
130000 50000			
1200000 150000			
3			
5000000 7			
500000 30			
6300000 24			