

Problem A
Water Gate Management
A dam has n water gates to let out water when necessary. Each water gate has its own capacity, water path and affected areas in the downstream. The affected areas may have a risk of flood when the water gate is open. The cost of potential damage caused by a water gate is measured in number calculated from the number of people and areas estimated to get affected.

Suppose a water gate G_{i} has the volumetric flow rate of $F_{i} \mathrm{~m}^{3} /$ hour and the damage cost of C_{i}. In a certain situation, the dam has the volume $V \mathrm{~m}^{3}$ of water to flush out within T hours. Your task is to manage the opening of the water gates in order to get rid of at least the specified volume of water within a limited time in condition that the damage cost is minimized.
For example, a dam has 4 water gates and their properties are shown in the following table.

Water Gate	$\mathbf{G}_{\mathbf{1}}$	$\mathbf{G}_{\mathbf{2}}$	\mathbf{G}_{3}	$\mathbf{G}_{\mathbf{4}}$
Flow rate $\left(\mathrm{m}^{3} /\right.$ hour $)$	720,000	50,000	130,000	$1,200,000$
Cost	120,000	60,000	50,000	150,000

Case 1: You have to flush out the water 5 million m^{3} within 7 hours. The minimum cost will be 120,000 by letting the water gate G1 open for 7 hours.
Case 2: You have to flush out the water 5 million m^{3} within 30 hours. The minimum cost will be 110,000 by letting the water gates G_{2} and G_{3} open, for example, G_{2} is open for 29 hours and G_{3} is open for 28 hours.

Note that each water gate is independent and it can be open only in a unit of whole hour (no fraction of hour).

Input

The first line includes an integer n indicating number of water gates ($1 \leq n \leq 20$). Then the next n lines contain, in each line, two integers: F_{i} and C_{i} corresponding to the flow rate ($\mathrm{m}^{3} / \mathrm{hour}$) and the damage cost of the water gate G_{i} respectively. The next line contains the number m which is the number of test cases $(1 \leq m \leq 50)$. The following m lines contain, in each line, two integers: V and T corresponding to the volume $\left(\mathrm{m}^{3}\right)$ of water to let out within T hours. $1 \leq F_{i}, V, C_{i} \leq 10^{9}, 1 \leq T \leq 1000$)

Output

For each test case, print out the minimum cost in the exact format shown in the sample output below. If it is not possible to let out the water of volume V in T hours from the dam, print out "IMPOSSIBLE" (without quotation marks).

Sample input	Sample output
4200000120000	Case 1: 120000
720006 Case 2: 110000	
5000000	
13000050000	
1200000150000	Case 3: IMPOSSIBLE
3	
50000007	
500000030	
6300000024	

