
The Seventh Hunan Collegiate
Programming Contest

17th September, 2011
You get 12 Pages

11 Problems
&

300 Minutes

A One-Two-Three
Input: Standard Input

Output: Standard Output

Your little brother has just learnt to write one, two and three, in English. He has written a lot of those
words in a paper, your task is to recognize them. Note that your little brother is only a child, so he may
make small mistakes: for each word, there might be at most one wrong letter. The word length is
always correct. It is guaranteed that each letter he wrote is in lower-case, and each word he wrote has a
unique interpretation.

Input
The first line contains the number of words that your little brother has written. Each of the following
lines contains a single word with all letters in lower-case. The words satisfy the constraints above: at
most one letter might be wrong, but the word length is always correct. There will be at most 10 words
in the input.

Output
For each test case, print the numerical value of the word.

Sample Input Output for Sample Input
3
owe
too
theee

1
2
3

Problemsetter: Rujia Liu, Special Thanks: Yiming Li & Jane Alam Jan

B Counting Game
Input: Standard Input

Output: Standard Output

There are n people standing in a line, playing a famous game called “counting”. When the game
begins, the leftmost person says “1” loudly, then the second person (people are numbered 1 to n from
left to right) says “2” loudly. This is followed by the 3rd person saying “3” and the 4th person say “4”,
and so on. When the n-th person (i.e. the rightmost person) said “n” loudly, the next turn goes to his
immediate left person (i.e. the (n-1)-th person), who should say “n+1” loudly, then the (n-2)-th person
should say “n+2” loudly. After the leftmost person spoke again, the counting goes right again.

There is a catch, though (otherwise, the game would be very boring!): if a person should say a number
who is a multiple of 7, or its decimal representation contains the digit 7, he should clap instead! The
following tables shows us the counting process for n=4 (‘X’ represents a clap). When the 3rd person
claps for the 4th time, he’s actually counting 35.

Person 1 2 3 4 3 2 1 2 3
Action 1 2 3 4 5 6 X 8 9
Person 4 3 2 1 2 3 4 3 2
Action 10 11 12 13 X 15 16 X 18
Person 1 2 3 4 3 2 1 2 3
Action 19 20 X 22 23 24 25 26 X
Person 4 3 2 1 2 3 4 3 2
Action X 29 30 31 32 33 34 X 36

Given n, m and k, your task is to find out, when the m-th person claps for the k-th time, what is the
actual number being counted.

Input
There will be at most 10 test cases in the input. Each test case contains three integers n, m and k
(2<=n<=100, 1<=m<=n, 1<=k<=100) in a single line. The last test case is followed by a line with
n=m=k=0, which should not be processed.

Output
For each line, print the actual number being counted, when the m-th person claps for the k-th time. If
this can never happen, print -1.

Sample Input Output for Sample Input
4 3 1
4 3 2
4 3 3
4 3 4
0 0 0

17
21
27
35

Problemsetter: Rujia Liu, Special Thanks: Yiming Li & Jane Alam Jan

C Polyomino Composer
Input: Standard Input

Output: Standard Output

A polyomino is a plane geometric figure formed by joining one or more equal squares edge to edge.
-- Wikipedia

Given a large polyomino and a small polyomino, your task is to determine whether you can compose
the large one with two copies of the small one. The polyominoes can be translated, but not flipped or
rotated. The two pieces should not overlap. The leftmost picture below is a correct way of composing
the large polyomino, but the right two pictures are not. In the middle picture, one of the pieces was
rotated. In the rightmost picture, both pieces are exactly identical, but they’re both rotated from the
original piece (shown in the lower-right part of the picture).

Input
There will be at most 20 test cases. Each test case begins with two integers n and m (1<=m<=n<=10)
in a single line. The next n lines describe the large polyomino. Each of these lines contains exactly n
characters in {‘*’,‘.’}. A ‘*’ indicates an existing square, and a ‘.’ indicates an empty square. The next
m lines describe the small polyomino, in the same format. These characters are guaranteed to form
valid polyominoes (note that a polyomino contains at least one existing square). The input terminates
with n=m=0, which should not be processed.

Output
For each case, print 1 if the corresponding composing is possible, print 0 otherwise.

Sample Input Output for Sample Input
4 3
.**.

.**.
....
**.
.**
...
3 3

.

*..
*..
**.
4 2

....
....
....
*.
*.
0 0

1
0
0

Problemsetter: Rujia Liu, Special Thanks: Yiming Li & Jane Alam Jan

D Polyomino Decomposer
Input: Standard Input

Output: Standard Output

A polyomino is a plane geometric figure formed by joining one or more equal squares edge to edge.

-- Wikipedia
Given a large polyomino, your task is to decompose it into at least two identical polyominoes (can’t be
flipped or rotated). The leftmost picture below is a correct way of decomposing, but the right two
pictures are not. In the middle picture, one of the pieces is rotated. In the rightmost picture, one of the
pieces is flipped. The number of pieces should be as small as possible. Note that there is at least one
solution: decompose it into a lot of unit squares.

Input
There will be at most 30 test cases. Each test case begins with an integer n (1<=n<=10) in a single
line. The next n lines describe the large polyomino. Each of these lines contains exactly n characters in
{‘*’,‘.’}. A ‘*’ indicates an existing square, and a ‘.’ indicates an empty square. These characters are
guaranteed to form a valid polyomino. There are at least one and at most twenty existing squares in the
large polyomino. The input terminates with n=0, which should not be processed.

Output
For each test case, output a line containing the decomposition of the large polyomino. Each existing
square is replaced by a capital letter representing the label of the piece. Different pieces should use
different labels. If there are multiple solutions, print the lexicographically smallest one. That is, if we
regard the solution as a long string, by concatenating rows from top to bottom, your output should be
lexicographically the smallest one among all possible solutions. Print an empty line after each case.

Sample Input Output for Sample Input
5
..**.
.****
****.
.**..
.....
2
**
**
0

..AA.

.AABB
AABB.
.BB..
.....

AA
BB

Problemsetter: Rujia Liu, Special Thanks: Yiming Li & Jane Alam Jan

E Box Game
Input: Standard Input

Output: Standard Output

There are two identical boxes. One of them contains n balls, while the other box contains one ball.
Alice and Bob invented a game with the boxes and balls, which is played as follows:

Alice and Bob moves alternatively, Alice moves first. For each move, the player finds out the box
having fewer number of balls inside, and empties that box (the balls inside will be removed forever),
and redistribute the balls in the other box. After the redistribution, each box should contain at least one
ball. If a player cannot perform a valid move, he loses. A typical game is shown below:

When both boxes contain only one ball, Bob cannot do anything more, so Alice wins.

Question: if Alice and Bob are both clever enough, who will win? Suppose both of them are very
smart and always follows a perfect strategy.

Input
There will be at most 300 test cases. Each test case contains an integer n (2<=n<=109) in a single line.
The input terminates by n=0.

Output
For each test case, print a single line, the name of the winner.

Sample Input Output for Sample Input
2
3
4
0

Alice
Bob
Alice

Problemsetter: Rujia Liu, Special Thanks: Yiming Li & Jane Alam Jan

F RPG battles
Input: Standard Input

Output: Standard Output

In many typical RPG games, you battle with bad guys, creatures, monsters or ghosts etc. all the time.
After each battle, you may get magic potions that power you up, so you’ll get stronger and stronger,
and finally defeat the big boss. In this problem, we only consider two kinds of potion: stronger and
double power. If you drink a bottle of stronger potion, your power increases by 1; if you drink a bottle
of double power potion, your power doubles.

How long each battle lasts depends on how powerful you are. Each battle is described by six
parameters: p1, p2, t1, t2, w1, w2. That means, if your power is less than p1, you will be defeated; if your
power is greater than p2, you’ll need t2 seconds to defeat all the enemies. If your power is between p1

and p2 (inclusive), the time needed for the battle decreases linearly from t1 to t2. For example, if p1=50,
p2=75, t1=40, t2=15, and your power is 55, then the battle lasts for 35 seconds. Note that the time
needed for battles may be non-integers. The last two parameters, w1 and w2, represent the number of
bottles of stronger potion and double power potion you got after winning the battle. Note that you
don’t have to drink these potions immediately. You can drink them later if that’ll decrease the total
time. You cannot drink potions during a battle, so the time needed for battles is not affected by the
potions.

Given the list of battles, your task is to find a strategy to win all the battles as quickly as possible. Note
that you must enter the battles in order. You cannot redo or skip any battle.

Input
There will be at most 25 test cases. Each test begins with two integers n and p (1<=n<=1000,
1<=p<=100), the number of battles and your initial power. Each of the next n lines contains 6 integers
p1, p2, t1, t2, w1, w2 (1<=p1<p2<=100, 1<=t2<t1<=100, 0<=w1,w2<=10). The input is terminated by a test
case with n=p=0, you should not process it.

Output
For each test case, print the shortest time (in seconds) to win all the battles, to two digits after the
decimal point. If you cannot win all the battles, print “Impossible” (without quotes).

Sample Input Output for Sample Input
1 55
50 75 40 15 10 0
2 55
50 75 40 15 10 0
50 75 40 15 10 0
3 1
1 2 2 1 0 5
1 2 2 1 1 0
1 100 100 1 0 0
1 7
4 15 35 23 0 0
1 1
2 3 2 1 0 0
0 0

35.00
60.00
41.00
31.73
Impossible

Problemsetter: Rujia Liu, Special Thanks: Yiming Li & Jane Alam Jan

G Optimal Symmetric Paths
Input: Standard Input

Output: Standard Output

You have a grid of n rows and n columns. Each of the unit squares contains a non-zero digit. You
walk from the top-left square to the bottom-right square. Each step, you can move left, right, up or
down to the adjacent square (you cannot move diagonally), but you cannot visit a square more than
once. There is another interesting rule: your path must be symmetric about the line connecting the
bottom-left square and top-right square. Below is a symmetric path in a 6x6 grid.

Your task is to find out, among all valid paths, how many of them have the minimal sum of digits?

Input
There will be at most 25 test cases. Each test case begins with an integer n (2<=n<=100). Each of the
next n lines contains n non-zero digits (i.e. one of 1, 2, 3, …, 9). These n2 integers are the digits in the
grid. The input is terminated by a test case with n=0, you should not process it.

Output
For each test case, print the number of optimal symmetric paths, modulo 1,000,000,009.

Sample Input Output for Sample Input
2
1 1
1 1
3
1 1 1
1 1 1
2 1 1
0

2
3

Problemsetter: Rujia Liu, Special Thanks: Yiming Li & Jane Alam Jan

H Pieces and Discs
Input: Standard Input

Output: Standard Output

There is a rectangle on the Cartesian plane, whose bottom-left corner is (0,0), top-right corner is
(L,W). You draw some line segments to divide the rectangle into pieces. Each line segment connects
two points on the boundary of the original rectangle (these two points are guaranteed to be on different
sides of the rectangle).

Finally, you draw some discs (a disc is a circle with its interior), and your task is to find out all the
pieces each disc is intersecting with (i.e. pieces that have non-zero intersection area with the disc), and
output their areas in increasing order. An example picture is shown below:

Input
There will be at most 100 test cases. Each test case begins with four integer n, m, L, W (1<=n,m<=20,
1<=L,W<=100), where n is the number of line segments, m is the number of discs. Each of the next n
lines describes a line segment with for integers x1, y1, x2, y2, that is a segment connecting (x1,y1) and
(x2,y2). These two points are guaranteed to be on different sides of the original rectangle. Each of the
last m line contains three integers x, y, R (0<=x<=L, 0<=y<=W, 1<=R<=100), indicating that the disc is
centered at (x, y), whose radius is R. No two segments will be the same. Input is terminated by
n=m=L=W=0.

Output
For each disc (same order as in input), print the number of pieces that the disc is intersecting with, and
the areas of these pieces in a single line. The areas should be sorted in increasing order, and each area
should be rounded to 2 digits after the decimal point. Print a blank line after each test case.

Sample Input Output for Sample Input
4 1 10 10
0 4 10 4
1 0 7 10
5 10 10 1
2 10 6 0
3 7 3
0 0 0 0

4 0.50 10.03 10.77 18.70

Problemsetter: Rujia Liu, Special Thanks: Jane Alam Jan

I Super Poker
Input: Standard Input

Output: Standard Output

I have a set of super poker cards, consisting of an infinite number of cards. For each positive integer p,
there are exactly four cards whose value is p: Spade(S), Heart(H), Club(C) and Diamond(D). There
are no cards of other values.

Given two positive integers n and k, how many ways can you pick up at most k cards whose values
sum to n? For example, if n=15 and k=3, one way is 3H + 4S + 8H, shown below:

Input
There will be at most 20 test cases, each with two integers n and k (1<=n<=109, 1<=k<=10). The input
is terminated by n=k=0.

Output
For each test case, print the number of ways, modulo 1,000,000,009.

Sample Input Output for Sample Input
2 1
2 2
2 3
50 5
0 0

4
10
10
1823966

Problemsetter: Rujia Liu, Special Thanks: Jane Alam Jan

J Super Poker II
Input: Standard Input

Output: Standard Output

I have a set of super poker cards, consisting of an infinite number of cards. For each positive
composite integer p, there are exactly four cards whose value is p: Spade(S), Heart(H), Club(C) and
Diamond(D). There are no cards of other values. By “composite integer”, we mean integers that have
more than 2 divisors. For example, 6 is a composite integer, since it has 4 divisors: 1, 2, 3, 6; 7 is not a
composite number, since 7 only has 2 divisors: 1 and 7. Note that 1 is not composite (it has only 1
divisor).

Given a positive integer n, how many ways can you pick up exactly one card from each suit (i.e.
exactly one spade card, one heart card, one club card and one diamond card), so that the card values
sum to n? For example, if n=24, one way is 4S+6H+4C+10D, shown below:

Unfortunately, some of the cards are lost, but this makes the problem more interesting. To further
make the problem even more interesting (and challenging!), I’ll give you two other positive integers a
and b, and you need to find out all the answers for n=a, n=a+1, …, n=b.

Input
The input contains at most 25 test cases. Each test case begins with 3 integers a, b and c, where c is the
number of lost cards. The next line contains c strings, representing the lost cards. Each card is
formatted as valueS, valueH, valueC or valueD, where value is a composite integer. No two lost cards
are the same. The input is terminated by a=b=c=0. There will be at most one test case where a=1,
b=50,000 and c<=10,000. For other test cases, 1<=a<=b<=100, 0<=c<=10.

Output
For each test case, print p integers, one in each line. Print a blank line after each test case.

Sample Input Output for Sample Input
12 20 2
4S 6H
0 0 0

0
0
0
0
0
0
1
0
3

Problemsetter: Rujia Liu, Special Thanks: Jane Alam Jan

K RMQ with Shifts
 Input: Standard Input

Output: Standard Output

In the traditional RMQ (Range Minimum Query) problem, we have a static array A. Then for each
query (L, R) (L<=R), we report the minimum value among A[L], A[L+1], …, A[R]. Note that the
indices start from 1, i.e. the left-most element is A[1].

In this problem, the array A is no longer static: we need to support another operation shift(i1, i2, i3, …,
ik) (i1<i2<...<ik, k>1): we do a left “circular shift” of A[i1], A[i2], …, A[ik].

For example, if A={6, 2, 4, 8, 5, 1, 4}, then shift(2, 4, 5, 7) yields {6, 8, 4, 5, 4, 1, 2}. After that,
shift(1,2) yields {8, 6, 4, 5, 4, 1, 2}.

Input
There will be only one test case, beginning with two integers n, q (1<=n<=100,000, 1<=q<=250,000),
the number of integers in array A, and the number of operations. The next line contains n positive
integers not greater than 100,000, the initial elements in array A. Each of the next q lines contains an
operation. Each operation is formatted as a string having no more than 30 characters, with no space
characters inside. All operations are guaranteed to be valid. Warning: The dataset is large, better to
use faster I/O methods.

Output
For each query, print the minimum value (rather than index) in the requested range.

Sample Input Output for Sample Input
7 5
6 2 4 8 5 1 4
query(3,7)
shift(2,4,5,7)
query(1,4)
shift(1,2)
query(2,2)

1
4
6

Problemsetter: Rujia Liu, Special Thanks: Yiming Li & Jane Alam Jan

			
	Input
	Output
	Sample Input Output for Sample Input
	Input
	Output

	Sample Input Output for Sample Input
	Input
	Output

	Sample Input Output for Sample Input
	Input
	Output

	Sample Input Output for Sample Input
	Input
	Output

	Sample Input Output for Sample Input
	Input
	Output

	Sample Input Output for Sample Input
	Sample Input Output for Sample Input
	2
	3
	Input
	Output

	Sample Input Output for Sample Input
	Input
	Output

	Sample Input Output for Sample Input
	Input
	Output

	Sample Input Output for Sample Input
	Input
	Output

	Sample Input Output for Sample Input

