

In the traditional RMQ (Range Minimum Query) problem, we have a static array A. Then for each query $(L, R)(L<=R)$, we report the minimum value among $A[L], A[L+1], \ldots, A[R]$. Note that the indices start from 1, i.e. the left-most element is $\mathrm{A}[1]$.

In this problem, the array A is no longer static: we need to support another operation shift $i_{1}, i_{2}, i_{3}, \ldots$, $\left.\mathrm{i}_{\mathrm{k}}\right)\left(\mathrm{i}_{1}<\mathrm{i}_{2}<\ldots<\mathrm{i}_{\mathrm{k}}, \mathrm{k}>1\right)$: we do a left "circular shift" of $\mathrm{A}\left[\mathrm{i}_{1}\right], \mathrm{A}\left[\mathrm{i}_{2}\right], \ldots, \mathrm{A}\left[\mathrm{i}_{\mathrm{k}}\right]$.

For example, if $\mathrm{A}=\{6, \underline{2}, 4, \underline{8}, \underline{5}, 1, \underline{4}\}$, then shift $(2,4,5,7)$ yields $\{\underline{6}, \underline{8}, 4,5,4,1,2\}$. After that, $\operatorname{shift}(1,2)$ yields $\{8,6,4,5,4,1,2\}$.

Input

There will be only one test case, beginning with two integers $n, q(1<=n<=100,000,1<=q<=250,000)$, the number of integers in array A, and the number of operations. The next line contains n positive integers not greater than 100,000 , the initial elements in array A. Each of the next q lines contains an operation. Each operation is formatted as a string having no more than 30 characters, with no space characters inside. All operations are guaranteed to be valid. Warning: The dataset is large, better to use faster I/O methods.

Output

For each query, print the minimum value (rather than index) in the requested range.

Sample Input

Output for Sample Input

7	5				1	
6	2	4	8	5	1	4
query $(3,7)$	4					
shift $(2,4,5,7)$	6					
query $(1,4)$						
shift $(1,2)$						
query $(2,2)$						

