1

Super	Poker
Input: Stan	dard Input

Output: Standard Output

I have a set of super poker cards, consisting of an infinite number of cards. For each positive integer p, there are exactly four cards whose value is p: Spade(S), Heart(H), Club(C) and Diamond(D). There are no cards of other values.

Given two positive integers *n* and *k*, how many ways can you pick up at most *k* cards whose values sum to *n*? For example, if n=15 and k=3, one way is 3H + 4S + 8H, shown below:

Input

There will be at most 20 test cases, each with two integers *n* and *k* ($1 \le n \le 10^9$, $1 \le k \le 10$). The input is terminated by *n*=*k*=0.

Output

For each test case, print the number of ways, modulo 1,000,000,009.

Sample Input	Output for Sample Input
2 1	4
2 2	10
2 3	10
50 5	1823966
0 0	

Problemsetter: Rujia Liu, Special Thanks: Jane Alam Jan