Prime Independence

A set of integers is called prime independent if none of its member is a prime multiple of another member. An integer \mathbf{a} is said to be a prime multiple of \mathbf{b} if,
$\mathbf{a}=\mathbf{b} \times \mathbf{k}$ (where \mathbf{k} is a prime [1])
So, 6 is a prime multiple of 2 , but $\mathbf{8}$ is not. And for example, $\{2,8,17\}$ is prime independent but $\{2$, $8,16\}$ or $\{\mathbf{3}, 6\}$ are not.

Now, given a set of distinct positive integers, calculate the largest prime independent subset.

Input

Input starts with an integer $\mathbf{T}(\leq \mathbf{2 5})$, denoting the number of test cases.
Each case starts with an integer $\mathbf{N}(1 \leq \mathbf{N} \leq 40000)$ denoting the size of the set. Next line contains \mathbf{N} integers separated by a single space. Each of these \mathbf{N} integers are distinct and between $\mathbf{1}$ and 500000 inclusive.

Output

For each case, print the case number and the size of the largest prime independent subset.

Sample Input	Output for Sample Input		
3			
5			
2	4	8	16
5	32	Case 1:	
5			
2	3	4	6
3	9	Case 2: 3:	
3	2		
1	2		

Notes

1. An integer is said to be a prime if it's divisible by exactly two distinct integers. First few prime numbers are $2,3,5,7,11,13, \ldots$

Problem Setter: Abdullah Al Mahmud, Special Thanks: Jane Alam Jan

