Hamming Base

You are given \mathbf{N} integers in base- \mathbf{N} each of them having exactly \mathbf{M} digits (may be with some leading zeros). Two integers are called \mathbf{K}-similar if they have the same digits in exactly \mathbf{K} positions. For example 321 and 213 are $\mathbf{0}$-similar. 3456 and 6453 are $\mathbf{2}$-similar, 123 and 453 are $\mathbf{1}$-similar. You want to change these given \mathbf{N}-integers in such a way that each pair of these integers are $\mathbf{0}$-similar. To achieve this goal you can change the integers in several steps. In a single step you can change a single digit of a single integer by 1 (incrementing or decrementing). But you can't decrement if the digit is $\mathbf{0}$ or you can't increment if the digit is $\mathbf{N}-\mathbf{1}$.

You need to achieve your goal in minimum number of steps.

Input

Input starts with an integer $\mathbf{T}(\mathbf{5 0})$, denoting the number of test cases.
Each case starts with a line containing two integers $\mathbf{N}(2 \leq \mathbf{N} \leq 2000)$ and $\mathbf{M}(1 \leq \mathbf{M} \leq 10)$. Each of the next \mathbf{N} lines contains \mathbf{M} integers between $\mathbf{0}$ and $\mathbf{N}-\mathbf{1}$ inclusive. These \mathbf{M} integers form an \mathbf{M} digit number in base \mathbf{N}.

Output

For each case, print the case number and the minimal steps required to achieve your goal.

Sample Input	Output for Sample Input
2	Case 1: 9
33	Case 2: 8
000	
000	
000	
42	
00	
00	
02	
20	

Problem Setter: Abdullah Al Mahmud, Special Thanks: Jane Alam Jan, Md Towhidul Islam Talukder

