
A permutation on the integers from 1 to n is, simply put, a
particular rearrangement of these integers. Your task is to
generate a given permutation from the initial arrangement
1,2,3,...,n using only two simple operations.

Operation 1: You may swap the first two numbers. For
example, this would change the arrangement 3,2,4,5,1
to 2,3,4,5,1.
Operation 2: You may move the first number to the end of the arrangement. For example, this would
change the arrangement 3,2,4,5,1 to 2,4,5,1,3.

Input Format

The input consists of a number of test cases. Each test case begins with a single integer n between 1 and 300.
On the same line, a permutation of integers 1 through n is given where consecutive integers are separated by a
single space.

Input is terminated by a line containing '0' which should not be processed.

Output Format

For each test case you are to output a string on a single line that describes a sequence of operations. The
string itself should consist only of the characters '1' and '2'. This string should be such that if we start with the
initial arrangement 1,2,3,...,n-1,n and successively apply rules 1 and 2 according to the order they appear in
the output, then the resulting permutation is identical to the input permutation.

The output string does not necessarily need to be the shortest such string, but it must be no longer than 2n2

characters. If it is possible to generate the permutation using 0 operations, then you may simply output a
blank line.

Sample Input

3 2 1 3
3 2 3 1
4 4 2 3 1
0

Sample Output

1
2
12122

Zac Friggstad

Calendars control our daily lives. For people like
me, who are bad at multitasking, it is important to
have at most one task planned for any minute of
my life. Your job is to make sure that my calendar
is free of conflicts for the next one million minutes
(just over 99 weeks) of my life. To keep things
simple, all times are expressed in minutes from a
fixed time 0 representing "now".

In this calendar, there are two types of tasks:
one-time tasks and repeating tasks. One-time tasks
have a start time and an end time. Repeating tasks
have a start time and an end time for their first
occurrence, and a repetition interval. Repeating
tasks are assumed to keep repeating forever without end. For example, a repeating task with start time 5, end
time 8 and repetition interval 100 would be occurring at time intervals [5..8], [105..108], [205..208],…

Tasks are considered to be in conflict if and only if their time intervals overlap, for example [2..5] and [4..6]
overlap. "Touching" is OK, for example [2..5] and [5..6] do not overlap.

Input Format

There are approximately 30 test cases. The first line of each test case contains two numbers n and m. n is the
number of one-time tasks and m the number of repeating tasks. The following n lines contain two numbers
each, the start and end times respectively of a one-time task. Afterward, m more lines similarly describe the
repeating tasks by giving their start times, end times, and repetition intervals. Both n and m are at most 100.

All numbers are integers in the range [0..1000000]. For each task, the end time is guaranteed to be larger than
the start time, and the repetition interval is larger than 0.

Input terminates with a line containing '0 0' which should not be processed.

Output Format

For each test case, print a single line containing either the words 'NO CONFLICT' if there are no overlaps
between any tasks for minutes 0..1000000, or 'CONFLICT' if there is at least one overlap.

Sample Input

2 0
10 20
20 30
2 0
10 30
20 21
1 1
1000 2000
0 10 1000

0 0

Sample Output

NO CONFLICT
CONFLICT
CONFLICT

Martin Müller

One of the primary hobbies (and research topics!) among
Computing Science students at the University of Alberta is,
of course, the playing of games. People here like playing
games very much, but the problem is that the games may get
solved completely—as happened in the case of Checkers.
Generalization of games is the only hope, but worries that
they will be solved linger still. Here is an example of a
generalization of a two player game which can also be
solved.

Suppose we have a directed acyclic graph with some number
of stones at each node. Two players take turns moving a stone from any node to one of its neighbours,
following a directed edge. The player that cannot move any stone loses the game. Note that multiple stones
may occupy the same node at any given time.

Input Format

The input consists of a number of test cases. Each test case begins with a line containing two integers n and
m, the number of nodes and the number of edges respectively. (1 ≤ n ≤ 1000, 0 ≤ m ≤ 10000). Then, m lines
follow, each containing two integers a and b: the starting and ending node of the edge (nodes are labeled from
0 to n-1).

The test case is terminated by n more integers s0,…,sn-1 (one per line), where si represents the number of
stones that are initially placed on node i (0 ≤ si ≤ 1000).

Each test case is followed by a blank line, and input is terminated by a line containing '0 0' which should not
be processed.

Output Format

For each test case output a single line with either the word 'First' if the first player will win, or the word
'Second' if the second player will win (assuming optimal play by both sides).

Sample Input

4 3
0 1
1 2
2 3
1
0
0
0

7 7
0 1
0 2

0 4
2 3
4 5
5 6
4 3
1
0
1
0
1
0
0

0 0

Sample Output

First
Second

Mohammad Reza Khani

Rex is a very lucky dog. His owner Stan is very diligent
about taking him out for a walk in the park every day.
Midway through these walks, Stan takes a break and ties
Rex to a pole so he can sit down on a bench for a few
minutes.

Rex is also a very busy dog. When he is tied to this pole,
he still likes to run around to look at various curiosities.
This often causes his leash to wrap around the pole quite a
few times. Once Stan's break is done, he calls Rex back to
the bench and then unties his leash. Stan likes to pull the
leash tight around the pole, and then see how many times
the leash is wrapped around and in which direction.

You will be given the description of the path that Rex
follows when he is tied around the pole. For simplicity,
this path will be given as a sequence of straight line
segments. Remember that Rex always returns to Stan
before being untied; this final segment is not explicitly included in the description.

Input Format

The first line of each test case contains a single integer n between 1 and 10,000 describing the number of line
segments. The next line consists of two integers x,y which describe the location of the pole. Then n lines
follow, where the i'th such line consists of two integers xi,yi between -10,000 and 10,000. This means that
Rex starts at x1,y1 and visits the points in the following manner: after visiting a point xi, yi Rex immediately
runs in a straight line to point xi+1,yi+1 for 1 ≤ i ≤ n-1. Finally, after visiting the final point xn,yn, Rex runs in a
straight line to the starting point x1,y1.

Input is terminated by a line containing '0' which should not be processed.

Output Format

For each test case you are to output a single line consisting of the number of times the leash winds around the
pole after Rex's run. Recall that the leash is pulled taught in the direction of Rex's final position after he is
done running and you may assume that no knots were formed in this process. If the number of times is k > 0,
then output +k if the leash is wrapped counter-clockwise around the pole, or output -k if the leash is wrapped
clockwise around the pole. If k = 0, then simply output 0.

Finally, it may be that Rex actually ran into the pole during his run. If this happens, then you should simply
output 'Ouch!' instead of a number. You can assume the pole is infinitesimally skinny which means that we
say Rex runs into the pole if Rex occupies the position x,y at any time during the run.

Sample Input

5
0 0

1 0
-3 1
2 -1
-1 1
-1 -1
4
1 -1
0 0
2 0
2 -2
0 -2
2
0 0
1 1
-1 -1
2
0 0
1 1
1 -1
0

Sample Output

+2
-1
Ouch!
0

Zac Friggstad

The latest assignment in your graph theory course asks you to
find the largest collection of edges in a graph which does not
contain a cycle. However, you didn't attend the class when
the assignment was given so you've asked to see the notes of
two of your friends. Unfortunately, one of your friends must
have written down the wrong graph because their two graphs
are different. In fact, the only thing the two graphs seem to
have in common is that they both include the same number of
edges m and the edges are numbered from 0 to m-1.

Since you don't know which graph is correct, you have two
options. On one hand, you could flip a coin to guess which
graph is correct. On the other hand, you could find the largest
subset T of the integers from 0 to m-1 so that in each of the two graphs, the edges which are numbered with
an integer in T are acyclic. Hoping to guarantee some partial marks, you choose the second option.

Input Format

The first integer k denotes the number of test cases. Each test case begins with three integers n1, n2, m where
n1 denotes the number of nodes in the first graph, n2 denotes the number of nodes in the second graph, and m
denotes the number of edges in both graphs.

Then m lines follow where the i'th such line consists of four numbers u1, v1, u2, v2 where 0 ≤ uj < vj < nj for
each j = 1,2. This means (u1,v1) is an edge in the first graph and (u2,v2) is an edge in the second graph.

No graph will have more than 50 nodes and the number of edges is at most 200. Furthermore, no graph will
have two of the same edge.

Output Format

The output for each test case is a single line beginning with an integer t denoting the size of the largest subset
T of integers 0 to m-1 such that neither graph contains a cycle where all edges are numbered with an integer
in T. Following this, you should output the numbers of the edges of such a subset in increasing order. Say
these integers are e1 < e2 < ... < et. If there are multiple subsets of integers of size t that contain no cycle in
either graph, then output the one that minimizes et. If there are still multiple such subsets with the same
minimum value for et, output the one among these that minimizes et-1, and so on.

Sample Input

2
3 4 3
0 1 0 1
1 2 1 2
0 2 2 3
5 5 5
0 1 0 1
1 2 0 2

1 3 2 4
2 3 3 4
2 4 1 2

Sample Output

2 0 1
4 0 2 3 4

Zac Friggstad

Given a set of rectangles in the plane, determine if it is
possible to choose one diagonal from each rectangle such
that none of the selected diagonals intersect. Two
diagonals intersect if they share at least one point. Note
that the rectangles themselves are free to intersect.

Input Format

Input consists of several test cases. Each test case begins
with an integer n (1 ≤ n ≤ 1000), representing the number
of rectangles. This is followed by n lines each describing a
rectangle using 8 integer numbers x1, y1, x2, y2, x3, y3, x4,
y4, where each (xi, yi) is a vertex. All coordinate values

are between -109 and 109.

The input is terminated by a line containing '0' which should not be processed.

Output Format

For each test case, output a line containing either 'YES' if the selection is possible or 'NO' if not.

Sample Input

4
0 1 1 1 1 0 0 0
1 1 2 1 2 0 1 0
2 3 5 3 5 0 2 0
2 3 3 3 3 2 2 2
7
0 10 10 10 10 0 0 0
10 10 20 10 20 0 10 0
20 30 50 30 50 0 20 0
20 30 30 30 30 20 20 20
30 10 40 10 40 0 30 0
5 0 30 0 30 -10 5 -10
0 0 5 0 5 -10 0 -10
0

Sample Output

YES
NO

Babak Behsaz

Suppose you are stuck in an n by m maze of cells and you want to
escape from it using as few steps as possible. You know that there is
a single cell (door cell) that you can escape from. However, the door
cell is initially closed and you cannot even move through it. In order
to open the door cell, you first have to push a box to a certain
position in the maze (button cell).

At each step you can move to one of the north, south, west and east
neighboring cells, as long as it is open (not a wall or the closed door
cell). In order to push the box, you must be in one of its neighboring
cells with an open cell on the other side to move the box into (for
example, if you are in the cell north of the box and the cell south of it
is open, you can push the box, resulting in both you and the box
moving one cell to the south). Pushing the box only counts as one
step. While the box is in the button cell, the door cell is open and you
can escape the maze through it.

Input Format

Input consists of a number of test cases. Each test case begins with two integers n and m, the number of rows
and columns in the maze respectively (2 ≤ n ≤ 20, 2 ≤ m ≤ 20). This is followed by n lines each containing
exactly m characters, representing the maze.

These characters are limited to:

'@', denoting your initial position
'd', denoting the position of the door cell
'x', denoting the initial position of the box
'b', denoting the position of the button cell
'#', denoting a cell containing a wall
'.', denoting an empty cell

Assume that the entire maze is surrounded by walls (in other words, you may never move nor push the box
out of the maze) and that there is exactly one each of 'd', 'b', 'x', and '@' (this means that the door is initially
closed since the box will never start on the button).

Each test case is followed by a blank line, and input is terminated by a line containing '0 0' which should not
be processed.

Output Format

For each test case, print a line containing the minimum number of steps needed to escape from the maze, or
the words 'No Way!' if it is impossible to escape.

Sample Input

3 3

d.b
.@.
x.#

3 5
...d.
.#x#.
...@b

0 0

Sample Output

No Way!
20

Mohammad Reza Khani

Thomas has just designed a new game called
"Net Profit". The game is played by two
players on a "net" of business ventures, each
of which offers a certain amount of profit (or
loss) in dollars. The term "net" refers to the
fact that ventures are connected to each other
by randomly generated links (chosen in such
a way that all the ventures are connected).

The first player may pick any venture to start,
and he scores the associated profit or loss.
This venture is now referred to as exhausted.
Afterward, the players take turns exhausting
ventures and collecting profits, following two
simple rules:

An exhausted venture may not be selected again (by either player)1.
Only ventures connected to an already exhausted venture are eligible for exhaustion2.

The game ends once all the ventures are exhausted, and the winner is the player with the greatest profit (or
smallest loss). With a given "net" of ventures and associated profits, Thomas would like to know the final
outcome of the game assuming optimal play from both players.

Input Format

Input consists of several test cases. Each test case begins with an integer N (1 ≤ N ≤ 16), representing the
number of ventures in the net. This is followed by a line containing N integers p1, p2, ..., pN; where pk is the
profit associated with venture k (|pk| ≤ 1000).

Next is a line containing a non-negative integer M, followed by M lines, each describing a link in the net.
Each link description consists of two integers a and b (1 ≤ a, b ≤ N, a ≠ b), which means that ventures a and b
are linked.

You may assume that the described net connects all the ventures in one component, and that a given link is
described at most once (so if link a b is given, link b a will not be).

The input is terminated by a line containing '0' which should not be processed.

Output Format

For each test case, output a line with the final result and score of the game assuming optimal play by both
players (see the sample output for details).

Sample Input

2
25 -20
1

1 2
3
15 15 -5
2
1 2
2 3
2
30 30
1
1 2
0

Sample Output

First player wins! 25 to -20.
Second player wins! 15 to 10.
Tie game! 30 all.

Sumudu Fernando

We define the operation of splitting a binary
number n into two numbers a(n),b(n) as
follows. Let 0 ≤ i1 < i2 < ... < ik be the indices
of the bits (with the least significant bit having
index 0) in n that are 1. Then the indices of the
bits of a(n) that are 1 are i1, i3, i5,… and the
indices of the bits of b(n) that are 1 are i2, i4,
i6,…

For example, if n is 110110101 in binary
then, again in binary, we have a =
010010001 and b = 100100100.

Input Format

Each test case consists of a single integer n
between 1 and 231-1 written in standard decimal (base 10) format on a single line. Input is terminated by a
line containing '0' which should not be processed.

Output Format

The output for each test case consists of a single line, containing the integers a(n) and b(n) separated by a
single space. Both a(n) and b(n) should be written in decimal format.

Sample Input

6
7
13
0

Sample Output

2 4
5 2
9 4

Zac Friggstad

You are given a quadratic function, f(n) = a×n2 +
b×n + c. You are also given a divisor d and a limit L.
How many of the function values f(0), f(1),…, f(L) are
divisible by d?

Input Format

Input consists of a number of test cases. Each test
case consists of a single line containing the numbers a
b c d L (-1000 ≤ a,b,c ≤ 1000, 1 < d < 1000000, 0 ≤ L
< 1000).

Input is terminated by a line containing '0 0 0 0 0'
which should not be processed.

Output Format

Print the answer for each test case (the number of function values f(0), f(1),…, f(L) divisible by d) on a
separate line.

Sample Input

0 0 10 5 100
0 0 10 6 100
1 2 3 4 5
1 2 3 3 5
0 0 0 0 0

Sample Output

101
0
0
4

Martin Müller

Imagine you are an explorer trying to cross a desert.
Many dangers and obstacles are waiting on your path.
Your life depends on your trusty old jeep having a
large enough fuel tank. But how large exactly does it
have to be? Compute the smallest volume needed to
reach your goal on the other side.

The following events describe your journey:

Fuel consumption n
means that your truck needs n litres of gasoline
per 100 km. n is an integer in the range [1..30].
Fuel consumption may change during your
journey, for example when you are driving up
or down a mountain.

Leak
means that your truck's fuel tank was punctured by a sharp object. The tank will start leaking gasoline
at a rate of 1 litre of fuel per kilometre. Multiple leaks add up and cause the truck to lose fuel at a faster
rate.

However, not all events are troublesome in this desert. The following events increase your chances of
survival:

Gas station
lets you fill up your tank.

Mechanic
fixes all the leaks in your tank.

And finally:

Goal
means that you have safely reached the end of your journey!

Input Format

The input consists of a series of test cases. Each test case consists of at most 50 events. Each event is
described by an integer, the distance (in kilometres measured from the start) where the event happens,
followed by the type of event as above.

In each test case, the first event is of the form '0 Fuel consumption n', and the last event is of the form
'd Goal' (d is the distance to the goal).

Events are given in sorted order by non-decreasing distance from the start, and the 'Goal' event is always the
last one. There may be multiple events at the same distance—process them in the order given.

Input is terminated by a line containing '0 Fuel consumption 0' which should not be processed.

Output Format

For each test case, print a line containing the smallest possible tank volume (in litres, with three digits
precision after the decimal point) that will guarantee a successful journey.

Sample Input

0 Fuel consumption 10
100 Goal
0 Fuel consumption 5
100 Fuel consumption 30
200 Goal
0 Fuel consumption 20
10 Leak
25 Leak
25 Fuel consumption 30
50 Gas station
70 Mechanic
100 Leak
120 Goal
0 Fuel consumption 0

Sample Output

10.000
35.000
81.000

Martin Müller

	A
	B
	C
	D
	E
	G
	H
	I
	J
	K

