Collision of Bacteria

An experiment is being conducted to find out how different colonies of bacteria behave when they collide with each other. The individual colonies are placed on a large dish and the dish can be modeled in a 2D plane. Initially, each colony occupies a rectangular area (sides parallel to axis) and the sizes of these colonies grow with time. The growth of the colonies occurs in the following manner:

1. The \mathbf{x} and \mathbf{y} coordinate of the lower-left corner decrease.

2. The \mathbf{x} coordinate of lower-right corner increases and the \mathbf{y} coordinate decreases.
3. The \mathbf{x} and \mathbf{y} coordinate of upper-right corner increase.
4. The \mathbf{x} coordinate of upper-left corner decreases and the \mathbf{y} coordinate increases.

All the increments/decrements mentioned above occur at a constant rate \mathbf{r} with respect to time. In this problem, you have to determine the smallest unit of time that elapses when there are at least two colonies that are not more than \mathbf{d} distance apart. Here the distance refers to the shortest Euclidean distance between the rectangular areas occupied by the colonies.

Input

The first line of input will contain $\mathbf{T}(\mathbf{\leq 1 0 0})$ denoting the number of cases.
Each case starts with an integer $\mathbf{n}(\mathbf{2} \leq \mathbf{n} \leq 50)$ denoting the number of colonies. Each of the next \mathbf{n} lines contains 4 integers $\mathbf{x}_{1} \mathbf{y}_{1} \mathbf{x}_{2} \mathbf{y}_{2}\left(0 \leq \mathrm{x}_{1}, \mathrm{y}_{1}, \mathbf{x}_{2}, \mathrm{y}_{2} \leq 10000, \mathrm{x}_{1}<\mathrm{x}_{2}, \mathrm{y}_{1}<\mathrm{y}_{2}\right)$ where $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ and $\left(\mathrm{x}_{2}\right.$, \mathbf{y}_{2}) denote the lower-left and upper-right corner of the colony respectively. Next line contains two integers, \mathbf{r} and $\mathbf{d}(1 \leq \mathrm{r}, \mathrm{d} \leq 50)$.

Output

For each case, print the case number and the desired result rounded to $\mathbf{3}$ places after the decimal point. If two colonies overlap or just touch each other, they are considered to be zero distance apart.

Sample Input	Output for Sample Input		
2			Case 1: 0.500
2			
0	0	1	1
3	0	4	1
1	1		
2			
0	0	1	1
0	1	3	2
1	1		

Problem Setter: Shamim Hafiz, Special Thanks: Tanaeem M Moosa, Jane Alam Jan

