H

Knight in War Grid

Once upon an ancient time, a knight was preparing for the great battle in GridLand. The GridLand is divided into square grids. There are **R** horizontal and **C** vertical grids. Our particular knight in this case can always give an (M, N) move, i.e. he can move **M** squares horizontally and **N** squares vertically or he can move **M** squares vertically and **N** squares horizontally in a single move. In other words he can jump from square (a, b) to square (c, d) if and only if, either (|a - c| = M and |b - d| = N) or (|a - c| = N and |b - d| = M). However, some of the squares in the war field are filled with water. For a successful jump from one square to another, none of the squares should contain water. Now, the knight wants to have a tour in the war field to check if everything is alright or not. He will do the following:

- a) He will start and end his tour in square (0, 0) but visit as many squares as he can.
- b) For each square $\mathbf{s_i}$, he counts the number $\mathbf{k_i}$ of distinct squares, from which he can reach $\mathbf{s_i}$ in one jump (satisfying the jumping condition). Then he marks the square as an even square if $\mathbf{k_i}$ is even or marks it odd if $\mathbf{k_i}$ is odd. The squares he cannot visit remain unmarked.
- c) After coming back to square **(0, 0)** he counts the number of even and odd marked squares. He can visit a square more than once.

You, as an advisor of the knight, suggested that, he can do it without visiting all the squares, just by writing a program. So the knight told you to do so. He will check your result at the end of his visit.

Input

The first line of input will contain $T (\leq 50)$ denoting the number of cases.

Each case starts with four integers R, C, M, N (1 < R, C \leq 100, 0 \leq M, N \leq 50, M + N > 0). Next line contains an integer W (0 \leq W < R * C), which is the number of distinct grids containing water. Each of the next W lines contains a pair of integer x_i , y_i (0 \leq x_i < R, 0 \leq y_i < C, x_i + y_i > 0).

Output

For each case, print the case number and the number of even and odd marked squares.

Sample Input	Output for Sample Input
2	Case 1: 8 0
3 3 2 1	Case 2: 4 10
0	
4 4 1 2	
2	
3 3	
1 1	

Problem Setter: Md. Towhidul Islam Talukder, Special Thanks: Jane Alam Jan