Dominator

In graph theory, a node \mathbf{X} dominates a node \mathbf{Y} if every path from the predefined start node to \mathbf{Y} must go through \mathbf{X}. If \mathbf{Y} is not reachable from the start node then node \mathbf{Y} does not have any dominator. By definition, every node reachable from the start node dominates itself. In this problem, you will be given a directed graph and you have to find the dominators of every node where the $0^{\text {th }}$ node is the start node.

As an example, for the graph shown right, $\mathbf{3}$ dominates $\mathbf{4}$ since all the paths from $\mathbf{0}$ to $\mathbf{4}$ must pass through $\mathbf{3}$. $\mathbf{1}$ doesn't dominate $\mathbf{3}$ since there is a path 0-2-3 that doesn't include $\mathbf{1}$.

Input

The first line of input will contain $\mathbf{T}(\mathbf{\leq 1 0 0})$ denoting the number of cases.
Each case starts with an integer $\mathbf{N}(\mathbf{0}<\mathbf{N}<\mathbf{1 0 0})$ that represents the number of nodes in the graph. The next \mathbf{N} lines contain \mathbf{N} integers each. If the $\mathbf{j}^{\text {th }}\left(\mathbf{0}\right.$ based) integer of $\mathbf{i}^{\text {th }}(\mathbf{0}$ based) line is $\mathbf{1}$, it means that there is an edge from node \mathbf{i} to node \mathbf{j} and similarly a $\mathbf{0}$ means there is no edge.

Output

For each case, output the case number first. Then output $\mathbf{2 N + 1}$ lines that summarizes the dominator relationship between every pair of nodes. If node \mathbf{A} dominates node \mathbf{B}, output ' \mathbf{Y} ' in cell (\mathbf{A}, \mathbf{B}), otherwise output ' \mathbf{N} '. Cell (\mathbf{A}, \mathbf{B}) means cell at $\mathbf{A}^{\text {th }}$ row and $\mathbf{B}^{\text {th }}$ column. Surround the output with $\mid,+$ and - to make it more legible. Look at the samples for exact format.

Sample Input	Output for Sample Input
$\begin{array}{\|llllll} \hline 2 & & & & \\ 5 & & & & \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 1 & & & & \\ 1 & & & & & \\ \hline \end{array}$	Case 1: +---------+ $\|Y\| Y\|Y\| Y\|Y\|$ ++-------+ $\|N\| Y\|N\| N\|N\|$ +--------+ $\|N\| N\|Y\| N\|N\|$ +--------+ $\|N\| N\|N\| Y\|Y\|$ +--------+ $\|N\| N\|N\| N\|Y\|$ +-------+ C ase $2:$ +-+ $\|Y\|$ +-+

Problem Setter: Sohel Hafiz, Special Thanks: Kazi Rakibul Hossain, Jane Alam Jan

