

It's believed that frogs jump due to lack of natural physical defense against predators. However, there are some types of frogs that do not leap. In this problem, we will consider a hybrid version of a frog that can both leap and walk.

Consider a magical creek with \mathbf{N} stones. The shape of each stone is either a circle or a square. Our frog is currently standing on stone 1 and it is going to make ($\mathrm{N}-1$) leaps so that it can land on every stone. It is believed that after making $\mathrm{N}-1$ jumps, the frog will grow wings and fly away. After every jump, it loses 10% of its 'leaping energy'. That means in the $K^{\text {th }}$ leap it can jump to a maximum distance of $L^{*} 0.9^{k-1}$, where L is the initial maximum jump distance. The frog, however, can walk from any point to any other point within a stone without loss of any energy.

In this problem, you have to find the minimum value of L that will enable the frog to visit all the stones starting from stone 1. Obviously, the visiting order of the stones will be such that the value of L is minimized. When calculating the distances, assume the frog is a point and the stones are circles and squares on a 2D Cartesian coordinate.

Input

The first line of input is an integer $\mathbf{T}(\mathbf{\leq} \mathbf{2 0 0})$ that indicates the number of test cases. Each case starts with a line containing an integer $\mathbf{N}(\mathbf{2 \leq N \leq 1 5)}$ that represents the number of stones. The next \mathbf{N} lines contain the descriptions of the stones starting from stone 1. Each stone will be given in the format type X Y R. type can be ' \mathbf{C} ' or ' \boldsymbol{S} ' and represents circle and square respectively. If type is equal to ' \mathbf{C} ', then (\mathbf{X}, \mathbf{Y}) will give you the center of the circle and \mathbf{R} will give you the radius. If type is ' \mathbf{S} ', then (\mathbf{X}, \mathbf{Y}) will give you the lower left corner of the square and \mathbf{R} will give the length of the sides. The sides of the squares are axis parallel. $\mathbf{0} \leq \mathrm{X}, \mathrm{Y} \leq \mathbf{1 0 0 0 0 0 0}, \mathbf{0}<\mathrm{R} \leq \mathbf{1 0 0 0}$ and stones will be non-overlapping.

Output

For each case, output the minimum value of \mathbf{L}. Errors less than 10^{-6} will be ignored.

Sample Input

| 2 | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | | | | |
| C | 0 | 0 | 5 | |
| C | 10 | 0 | 2 | |
| 3 | | | | |
| C | 0 | 0 | 2 | |
| S | 10 | 1 | 4 | |
| S | 3 | 1 | 2 | |
| S | | | | |

Output for Sample Input
3.000000
5.555556

Note

For the second sample we have the picture on the right. Initial value of L is 5.555556 . First, the frog makes a leap to stone 3. It loses 10\% of energy and that means the next leap distance can be at most 5.555556 * $0.9=5.000000$. Since the shortest distance between stone 3 and stone 2 is 5.000000 , the next leap will enable the frog to land safely on stone 2.

