
2010 Southwestern European Regional Contest
Problems

Hosted by

Facultad de Informática. Universidad Complutense de Madrid

Contents

A Lawn mower 3

B Periodic points 5

C Comparing answers 7

D Fake scoreboard 9

E Palindromic DNA 11

F Jumping monkey 13

G Sensor network 15

H Assembly line 17

I Locks and keys 19

J 3-sided dice 21

1

A
Lawn mower

The International Collegiate Soccer1 Competition (ICSC) is famous for its well-kept rectangular stadiums.
The grass playing fields in ICSC stadiums are always 100 meters long, and 75 meters wide. The grass is
mowed every week with special lawn mowers, always using the same strategy: first, they make a series of
passes along the length of the field, and then they do the same along the width of the field. All passes are
straight lines, parallel to the sides of the field.

The ICSC has hired a new lawn-mower, Guido. Guido is very chaotic, and instead of covering the field
incrementally, he likes to choose random starting positions for each of his passes. But he is afraid of not
doing a good job and being fired by the ICSC, so he has asked you to help him. Write a program to make
sure that the grass in the field is perfectly cut: all parts of the field have to be mowed at least once when
the mower goes from end to end, and again when the mower goes from side to side.

Input

Each test case contains 3 lines. The first line contains two integers, nx (0 < nx < 1 000) and ny

(0 < nx < 1 000), and a real number w (0 < w ≤ 50), which represents the width of the cut of that
particular lawn mower. The next line describes the end-to-end passes (along the length of the field), and
contains nx real numbers xi (0 ≤ xi ≤ 75) describing the starting positions of the mower’s center in Guido’s
end-to-end passes. The last line describes the side-to-side passes, with ny real numbers yi (0 ≤ yi ≤ 100).

The end of the test cases is signalled with a line that contains the numbers 0 0 0.0. You should generate
no output for this line, as it is not a test case.

Real numbers for w, xi and yi can have up to 7 digits after the decimal point, and any cut will also
include its boundaries. For example, if a 2.0-meter wide cut is performed along the 10.0-meter mark, then
a strip of grass from 9.0 to 11.0 (including both) will be considered “cut”.

Output

Print YES if Guido has done a good job, or NO if some part of the field has not been mowed at least
once when the mower was travelling along the length of the field, and again when it was travelling along the
width.

1The ICSC is sponsored by the Association for Sports Machinery (ASM), which started out in the US, so they prefer to use
the term ‘soccer’ instead of ‘football’.

3

Sample Input

8 11 10.0

0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0

0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100.0

8 10 10.0

0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0

0.0 10.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100.0

4 5 20.0

70.0 10.0 30.0 50.0

30.0 10.0 90.0 50.0 70.0

4 5 20.0

60.0 10.0 30.0 50.0

30.0 10.0 90.0 50.0 70.0

0 0 0.0

Sample Output

4

B
Periodic points

Computing the number of fixed points and, more generally, the number of periodic orbits within a dynamical
system is a question attracting interest from different fields of research. However, dynamics may turn out to
be very complicated to describe, even in seemingly simple models. In this task you will be asked to compute
the number of periodic points of period n of a piecewise linear map f mapping the real interval [0,m] into
itself. That is to say, given a map f : [0,m] → [0,m] you have to calculate the number of solutions to the
equation fn(x) = x for x ∈ [0,m], where fn is the result of iterating function f a total of n times, i.e.

fn =

n f ’s︷ ︸︸ ︷
f ◦ .. ◦ f ◦ f,

where ◦ stands for the composition of maps, (g ◦ h)(x) = g(h(x)).
Fortunately, the maps you will have to work with satisfy some particular properties:

• m will be a positive integer and the image of every integer in [0,m] under f is again an integer in
[0,m], that is, for every k ∈ {0, 1, . . . ,m} we have that f(k) ∈ {0, 1, . . . ,m}.

• For every k ∈ {0, 1, . . . ,m− 1}, the map f is linear in the interval [k, k + 1]. This means that for every
x ∈ [k, k + 1], its image satisfies f(x) = (k + 1 − x)f(k) + (x − k)f(k + 1), which is equivalent to its
graph on [k, k + 1] being a straight line segment.

3

2

1

0 1 2 3

3

2

1

0 1 2 3

Figure 1: Graphs of the third map in the sample input, f3 (left), and of its square, f2
3 (right).

Since there might be many periodic points you will have to output the result modulo an integer.

Input

The input consists of several test cases, separated by single blank lines. Each test case begins with a line
containing the integer m (1 ≤ m ≤ 80). The following line describes the map f ; it contains the m+1 integers
f(0), f(1), . . . , f(m), each of them between 0 and m inclusive. The test case ends with a line containing two
integers separated by a blank space, n (1 ≤ n ≤ 5 000) and the modulus used to compute the result, mod
(2 ≤ mod ≤ 10 000).

The input will finish with a line containing 0.

Output

For each case, your program should output the number of solutions to the equation fn(x) = x in the
interval [0,m] modulo mod. If there are infinitely many solutions, print Infinity instead.

5

Sample Input

2

2 0 2

2 10

3

0 1 3 2

1 137

3

2 3 0 3

20 10000

0

Sample Output

4

Infinity

9074

6

C
Comparing answers

In a place in Southwestern Europe, the name of which I do not wish to recall, not long ago there were n
cities connected by unidirectional roads, with possibly more than one road connecting a city to another one,
or even to itself. As a homework assignment for your geography class, you need to calculate the number of
paths of length exactly two that were between each pair of cities. However, you’ve been too busy celebrating
the Spanish victory in the World Cup, so now you are copying the answers from your friend. You would like
to make sure his answers are correct before handing in your homework.

Input

The input consists of several test cases, separated by single blank lines. Each test case begins with a line
containing the integer n (1 ≤ n ≤ 1 000). The following n lines contain n elements each, with element j of
line i being the number of roads from city i to city j (a number between 0 and 10, inclusive). After that,
there will be n lines. Each will contain n elements, with element j of line i being the answer from your friend
for the number of length-2 paths from city i to city j; it will be an integer between 0 and 100 000 inclusive.

The test cases will finish with a line containing only the number zero (also preceded by a blank line).
Note: Large input file; use fast I/O routines.

Output

For each case, your program should output a line. The content of this line should be YES if your classmate’s
solution to the assignment is right, and NO otherwise.

Sample Input

3

2 0 1

1 0 3

1 1 0

5 1 2

5 3 1

3 0 4

3

2 0 1

1 0 3

1 1 0

5 1 2

5 3 2

3 0 4

0

Sample Output

YES

NO

7

8

D
Fake scoreboard

As you know, after the award ceremony of SWERC it is customary to publish a complete scoreboard
with detailed information on the submissions and verdicts received. However, due to the buggy contest
management system, most of the relevant data are not being recorded today. Clearly such state of affairs
fails to meet the high standards we are committed to, so the judges have resolved to make up the rest of the
data based on whatever shred of information left, and hope contestants are unable to tell the difference. To
make our lives even simpler, we kindly ask you to provide a solution for us, or else today’s scoreboard will
remain forever veiled in mystery (even the fake one).

What we will know by the end of the contest is the number T of teams, the number P of problems, and
the number of accepted submissions by each team. From the number and colour of balloons floating around
on the premises we will also be able to infer how many teams solved each of the problems. Your task is to
figure out which teams solved which problems.

Our counting skills are not up to par, so your program should be able to detect when the data we
collected must be wrong (see sample input 1). Otherwise you should output a possible solution, represented
as a sequence of T strings of P characters each, in the following way. Both problems and teams are assigned
with distinct integers, from 1 to P and 1 to T , respectively. For team number i (1 ≤ i ≤ T), write the string
on alphabet N,Y such that its j-th (1 ≤ j ≤ P) character is Y if the team managed to get problem j accepted,
and N otherwise. For example, the following three strings form a solution to the second sample case, where
the score of each of three teams is 2, 1, 2, and the count of accepted submissions for each of three problems
is 1, 2, 2:

NYY

NNY

YYN

There is at least one other solution, namely

NYY

NYN

YNY

When several solutions are possible we ask you to supply the one giving rise to the lexicographically
smallest string, when each of the T rows are concatenated in order. In the example above we prefer the first
solution, since NYYNNYYYN comes before NYYNYNYNY in lexicographical order. (String S comes before S′ in
lexicographical order if the first different character between the two is N in S but Y in S′).

Input

Each input case is described by three lines:
The first contains two space-separated integers T (the number of teams) and P (the number of problems),

with 1 ≤ T, P ≤ 80. The second contains T space-separated integers between 0 and 90 (inclusive), the i-th of
which indicates the number of problems solved by team i. The third (and last) line has P integers between
0 and 90, the j-th of which describes the number of teams successfully solving problem j.

Different input cases are separated by a blank line. The last line of the input file will be 0 0.

Output

If the input data has a solution, print T lines of P characters each, depicting the lexicographically smallest
solution as explained above. Otherwise output a single line with the word Impossible. In any case a blank
line should separate outputs for different test cases.

9

Sample Input

2 2

1 2

1 1

3 3

2 1 2

1 2 2

3 5

3 3 1

3 1 1 0 2

0 0

Sample Output

Impossible

NYY

NNY

YYN

YNYNY

YYNNY

YNNNN

10

E
Palindromic DNA

A DNA sequence is composed of a series of four possible nucleobases, namely Adenine, Guanine, Thymine
and Cytosine; we will refer to each of these bases by their initial. For our purposes, nucleobases have
an associated cyclic “order”: A is followed by G, which in turn is followed by T, which is followed by C,
which is followed by A again. State-of-the-art research in genomics has revealed the startling fact that many
diseases are caused by certain subsequences of bases not forming a palindromic sequence! Your mission as
a leading researcher at ICPC laboratories is to take a DNA string S and a series of subsets P1, . . . , Pt of
indices to characters (nucleobases) in S, and transform S so that each of the restrictions of the resulting
string to P1, . . . , Pt are palindromic. (The restriction of S to a subset P = {i1, i2, . . . , ik} of indices, where
0 ≤ i1 < i2 < . . . < ik < |S|, is the string Si1Si2 . . . Sik). It is possible to inspect any base of S at will, but
only three transformations can be applied to a base:

1. Leave it unaltered.

2. Increase it by 1 in the cyclic order of nucleobases (e.g. turn C into A).

3. Decrease it by 1 (e.g. turn T into G).

Moreover, owing to limitations of current technology, it is impossible to modify two bases in consecutive
positions of the sequence. Is our goal achievable?

By way of example, consider DNA sequence AGTAT. Number positions starting from 0, and suppose we
have the three subsets P1 = {1, 4}, P2 = {0, 1} and P3 = {0, 2, 4}. One solution is to increase the first
character and decrease the last, yielding S′ = GGTAG. The restrictions of S′ to P1, P2 and P3 are GG, GG and
GTG, respectively; all of them are palindromic.

One case where no solution is possible is when the string is CATGC, and we require the subsequences
determined by positions {0, 3} and {3, 4} be palindromic. Here, characters 3, 0 and 4 would all need to
become a T. But this entails modifying consecutive characters 3 and 4, which is not allowed.

Input

The first line of each test case has two integers N and T (1 ≤ N ≤ 10 000, 1 ≤ T ≤ 6 000), the sequence
length and number of subsets to consider. The next line contains the DNA sequence of length N , all of
whose characters are in ACGT. The subsets are described by the following T lines. Each line starts by “L:”,
where L (0 ≤ L ≤ N) is the number of positions in the subset, and is followed by T distinct integers between
0 and N − 1 in increasing order. Subsets may overlap partially or totally.

A blank line separates different test cases. The input file is terminated by a line containing 0 0.

Output

In a single line per test case, print YES if the task is solvable and NO otherwise.

11

Sample Input

5 3

AGTAT

2: 1 4

2: 0 1

3: 0 2 4

5 3

CATGC

0:

2: 0 3

2: 3 4

0 0

Sample Output

YES

NO

12

F
Jumping monkey

You are a hunter chasing a monkey in the forest, trying to shoot it down with your all-powerful automatic
machine gun. The monkey is hiding somewhere behind the branches of one of the trees, out of your sight.
You can aim at one of the trees and shoot; your bullets are capable of going through the branches and killing
the monkey instantly if it happens to be in that tree. If it isn’t, the monkey takes advantage of the time
it takes you to reload and takes a leap into a neighbouring tree without you noticing. It never stays in the
same place after a shot. You would like to find out whether there is an strategy that allows you to capture
the monkey for sure, irrespective of its initial location and subsequent jumps. If so, you need to determine
the shortest sequence of shots guaranteeing this.

Figure 2

As an example, consider the situation in which there are only two neighboring trees in the forest (left
hand side of Figure 2). It is then possible to make sure you capture the monkey by shooting twice at the
same tree. Your first shot succeeds if the monkey happened to be there in the first place. Otherwise, the
monkey was behind the other tree and it will necessarily have moved when you shoot for the second time.

However, depending on the shape of the forest it may not be possible for you to ensure victory. One
example of this is if there are three trees, all connected to one another (right hand side of Figure 2). No
matter where you aim at, there are always two possible locations for the monkey at any given moment.
(Note that here we are concerned with the worst-case scenario where the monkey may consistently guess
your next target tree).

Input

The input consists of several test cases, separated by single blank lines. Each test case begins with a line
containing two integers n and m (1 ≤ n ≤ 21); n is the number of trees in the forest, and m is the number
of adjacency relations between trees. Each of the following m lines contains two distinct integers between 0
and n − 1 (inclusive), the identifiers of the trees in an adjacent pair. The order of both trees within a pair
carries no meaning, and no pair appears more than once. You may further assume that no tree is adjacent
to itself, and there is always a path between any two trees in the forest.

The test cases will finish with a line containing only two zeros (also preceded with a blank line).

Output

Print a line for each test case. The line should contain the single word Impossible if the task is
impossible. Otherwise, it must contain the shortest sequence of shots with the required property, in the
format L: V1V2 . . . VL, where L is the length of the sequence, and V1, V2, . . . , VL are space-separated integers
containing the identifiers of the trees to shoot at in the right order. If several shortest sequences exist, print
the lexicographically smallest one. (A sequence is smaller than another in lexicographic order if the first
element on which they differ is smaller in the first one).

13

Sample Input

2 1

0 1

3 3

0 1

1 2

2 0

4 3

0 1

2 3

1 3

0 0

Sample Output

2: 0 0

Impossible

4: 1 3 3 1

14

G
Sensor network

In response to a request by the SWERC 2010 problem-setting team, a sensor network has just been installed
in the headquarters. The organizing committee has put in the problem-setters the disproportionate fear of
suffering a leak of classified information about the problems.

Nevertheless, in the rush they forgot to think about the electricity network needed to make the sensors
work. Because of this, the security system is currently not working, but we need to justify the great amount
of resources invested in it, so the installation must be ready before the end of the contest. Hence you are
now asked to elaborate a program which will help the electrician in his duty.

Since the organizing committee spared no expense, they ordered the sensors from a prestigious company.
Every sensor is handcrafted and a number is written on each of them, whose meaning is the recommended
voltage that should be applied to it for correct operation. They can be used under higher voltages, with
an increasing risk of failure, but never with a voltage below the recommended one. The electrician gazed
open-mouthed at the sensors when they were given to him: nearly all of them had different recommended
voltages! The sensors were installed in the building in such a way that each of them controls exactly two
doors and every door is controlled by at least one sensor. Now is the time for the electrician to supply power
to the sensors. He faces the following constraints:

• Fortunately, there is no need to activate all sensors. However, we will require that the subset of sensors
chosen to be on satisfy that every door is controlled by, at least, one sensor in the subset.

• Electricity is to be supplied to one of the active sensors, and then distributed to the others with wires.
In order not to waste wires, they can only be installed by connecting a pair of neighboring active
sensors (by “neighbouring” we mean that some door is controlled by both of them). Since we must
supply energy to every active sensor, not every subset of sensors is suitable as the chosen subset of
working sensors.

• Because of the above, all of the sensors will be supplied the same voltage, which cannot be below the
corresponding recommended voltages.

For simplicity, we will refer to a subset of sensors satisfying the first two constraints above as an admissible
subset. The network is designed so that the set of all sensors is always admissible, but we would like to take a
possibly smaller subset so as to minimize the margin, defined as the maximum of the differences, in absolute
value, between the numbers written on each pair of sensors in the subset. (This is to keep the chances of
failure to a minimum).

The electrician could not solve the task of finding the admissible subset of the set of sensors for which
the margin is minimum. Therefore, the electrical installation is still missing. Today, we ask you to write a
program to find out the answer, given a sensor network and the recommended voltage for each of the sensors.

Input

The input consists of several test cases, separated by single blank lines. Each test case begins with a line
containing the integer n (2 ≤ n ≤ 350), the number of doors in the building. The following line contains
another integer, m (n− 1 ≤ m ≤ n(n− 1)/2), the number of sensors in the network. The test case finishes
with m lines containing a description of each of the m sensors. The i-th of those lines contains three integers,
a (0 ≤ a ≤ n− 1), b (0 ≤ b ≤ n− 1) and w (1 ≤ w ≤ 215), in that order. Integers a and b represent the pair
of doors controlled by the i-th sensor, and w its recommended voltage. You can safely assume that there
are no two sensors controlling the same two doors.

The input will finish with a line containing 0.

15

Output

For each case, your program should output a line containing the minimum margin of an admissible subset
of the sensors.

Sample Input

3

3

0 1 220

1 2 120

2 0 160

4

5

2 3 80

1 3 80

0 1 180

2 1 200

3 0 140

0

Sample Output

40

60

16

H
Assembly line

The last worker in a production line at the factory of Automated Composed Machinery is worried. She
knows that her job hangs in the balance unless her productivity increases. Her work consists of assembling
a set of pieces in a given sequence, but the time spent on assembling pieces a and b and then c may not the
same as that on assembling pieces b and c, and then assembling a with the resulting component. Only two
consecutive pieces may be assembled at a time, and once they are assembled they behave as another piece
in terms of the time needed for further assembly.

In order to aid her, you need to find the optimal way to assemble all components. The input to your
program will be a set of symbols representing (types of) pieces, and a so-called assembly table representing
the time it takes to assemble them, as well as the type of the resulting component. For instance, we may
have two symbols {a, b}, and the following table:

a b
a 3-b 5-b
b 6-a 2-b

This means, for example, that two pieces of type a and a may assembled in 3 minutes, and the result
is a component of type b, in that the time required to assemble it again with another piece of, say, type
a is 6 minutes, and so on. Note that the table is not symmetric, i.e. assembling b and a may be more
time-consuming than a and b.

For a sequence of components labelled aba, the two possible solutions are:

• (ab)a = ba = a with time time(ab) + time(ba) = 5 + 6 = 11.

• a(ba) = aa = b with time time(ba) + time(aa) = 6 + 3 = 9.

So the result for this case would be a piece of type b in 9 minutes (denoted 9-b).

Input

The input consists of several test cases. Each test case begins with a line containing a natural number k
(1 ≤ k ≤ 26), followed by a line with k symbols (characters in [a-z]) separated by spaces. The following k
lines contain the assembly table: the i-th line has k pairs of the form time-result, where time is an integer
between 0 and 1 000 000 inclusive, and result a symbol belonging to the preceding set. The j-th pair in the
i-th line represents the time to compose pieces of types represented by the i-th and j-th symbols, along with
the type of the resulting piece. After the table, a line with an integer n indicates the number of lines that
follow, each line being a string of at most 200 symbols. Each of these lines is a sequence of components that
need to be assembled together in the right order.

The input will finish with a line containing 0, which should not be processed.

Output

For each test case, print n lines, each with an integer time and a symbol result in the format time-result.
Each line represents the minimum time and the type of the resulting piece for the corresponding case in the
input. In case of a tie among several possible results with the same minimum time, choose from among those
the piece whose type letter appears first in the line that contained the k symbols at the beginning of the test
case. (For example, if that line was a c b and both c and b can be obtained with minimum cost 5, print 5-c).

There must be an empty line between the output of different test cases.

17

Sample Input

2

a b

3-b 5-b

6-a 2-b

2

aba

bba

2

m e

5-e 4-m

3-e 4-m

1

eme

0

Sample Output

9-b

8-a

7-m

18

I
Locks and keys

A wizard is in a labyrinth where there are V rooms and V − 1 doors connecting some pairs of rooms in both
directions, in such a way that there is always a sequence of doors one can traverse to go from a room to any
other room. Additionally, there are C locks and C keys of C different colours (one of each) in some of the
doors and rooms of the maze, respectively; each door has at most one lock, and there is at most one key
placed in each room. It should be an easy matter for the wizard to bypass the lock system, were it not for
the fact that he forgot his spell book, without which his wizardry is utterly useless. The wizard is currently
in room X, and he wants to get his spell book, located in room Y , without taking too long. At every step
he may go to an adjacent room through one of the doors. Of course, if the door is locked, he needs to be
carrying the key of the same colour as the lock (unless, of course, that door has already been unlocked).
The wizard can carry only one key at a time and after picking up a key it is not possible for him to drop
it somewhere in the maze in order to take it again afterwards. Once a door has been unlocked, the key is
thrown away since it is no longer any use.

Given the maze and the positions of the C keys and C locks, determine how to reach Y from X, if
possible. Any path whose length does not exceed 4 · (C + 1) · V is acceptable.

Input

The first line of each case contains four integers: the number V of rooms in the maze (1 ≤ V ≤ 1 500),
the number C of locks (0 ≤ C < V), and rooms X and Y numbered 0, 1, . . . , V − 1. Then comes a (possibly
empty) line with C integers indicating the location of each of the keys, in order of increasing colour. The
next V −1 lines describe the maze: each contains three integers A B L, meaning that there is a door between
rooms A and B which can be unlocked with the key of colour L, if 0 ≤ L < C; a value of −1 for L indicates
that no lock is needed.

The last line has V,C,X, Y = 0, 0, 0, 0.

Output

There is one line of output per test case. If there is no solution, output Impossible. Otherwise print the
full path corresponding to your solution in the format L:V0 . . . VL, where L ≤ 4(C + 1)V is the length of a
path from X to Y , and X = V0, V1, . . . , VL−1, VL = Y is the sequence of L + 1 vertices visited in the right
order. A single space must precede each vertex in the path; see sample output for clarification.

19

Sample Input

1 0 0 0

3 1 0 2

1

0 1 -1

0 2 0

3 2 0 2

1 2

0 1 1

0 2 0

5 3 0 4

2 0 3

0 1 0

0 2 -1

1 3 1

2 4 2

0 0 0 0

Sample Output

0: 0

3: 0 1 0 2

Impossible

10: 0 2 0 1 0 1 3 1 0 2 4

20

J
3-sided dice

Just like every fall, the organizers of the Southwestern Europe Dice Sim-
ulation Contest are busy again this year. In this edition you have to sim-
ulate a 3-sided die that outputs each of three possible outcomes (which
will be denoted by 1, 2 and 3) with a given probability, using three dice
in a given set. The simulation is performed this way: you choose one of
the given dice at random, roll it, and report its outcome. You are free to
choose the probabilities of rolling each of the given dice, as long as each
probability is strictly greater than zero. Before distributing the mate-
rials to the contestants, the organizers have to verify that it is actually
possible to solve this task.

For example, in the first test case of the sample input you have to
simulate a die that yields outcome 1, 2 and 3 with probabilities 3

10 ,
4
10 and 3

10 . We give you three dice, and
in this case the i-th of them always yields outcome i, for each i = 1, 2, 3. Then it is possible to simulate the
given die in the following fashion: roll the first die with probability 3

10 , the second one with probability 4
10

and the last one with probability 3
10 .

Input

The input consists of several test cases, separated by single blank lines. Each test case consists of four
lines: the first three of them describe the three dice you are given and the last one describes the die you have
to simulate. Each of the four lines contains 3 space-separated integers between 0 and 10 000 inclusive. These
numbers will add up to 10 000, and represent 10 000 times the probability that rolling the die described in
that line yields outcome 1, 2 and 3, respectively.

The test cases will finish with a line containing only the number zero repeated three times (also preceded
with a blank line).

Output

For each case, your program should output a line with the word YES if it is feasible to produce the desired
die from the given ones, and NO otherwise.

Sample Input

0 0 10000

0 10000 0

10000 0 0

3000 4000 3000

0 0 10000

0 10000 0

3000 4000 3000

10000 0 0

0 0 0

Sample Output

YES

NO

21

	A Lawn mower
	B Periodic points
	C Comparing answers
	D Fake scoreboard
	E Palindromic DNA
	F Jumping monkey
	G Sensor network
	H Assembly line
	I Locks and keys
	J 3-sided dice

