
XXIV Maratón Nacional de Programación

ACIS REDIS 2010
ACM ICPC

Problemas
(Este conjunto contiene 8 problemas; páginas numeradas de 1 a 17)



XXIV Colombian Programming Contest ACIS REDIS 2010 - ACM ICPC 1

Problem A
Y-game

Source file name: ygame.c, ygame.cpp or ygame.java

Willy and Benny enjoy very much playing Y-game! This is a game in which white and black
tokens are placed on a triangular n-grid, n ≥ 0, where n is called the order of the grid. A 3-grid
is depicted in the figure below:

In general, an n-grid has (n+ 2)(n+ 1)/2 points with nonnegative “baricentric coordinates”
(x, y, z), where x+y+ z = n. Coordinates in a n-grid are assigned in such way that along right
to left paths x-coodinates are constant, y-coordinates increase by one unit, and z-coordinates
decrease by one unit (observe that this construction maintains x+ y+ z = n true). Symmetric
situations may be observed for left to right (where y-coordinates are constant) and horizontal
(where z-coordinates are constant) paths. A point (x, y, z) in a n-grid is said to lay on the x
side (resp., y side, z side) if and only if x = 0 (resp., y = 0,z = 0).

Willy uses white tokens and Benny uses black ones. Y-game rules are rather complicated,
but the end of the game is attained when there is a token placed on every node of the grid.
The winner is that player that has formed a Y, that is, his/her tokens are so placed that they
include a connected set of points with a point on each side. For example, the following figure
represents an end situation where Benny wins:

The winner is rather easy to determine when the grid is small. But Willy and Benny are not
interested in that discussion today. Actually, they just want a software solution that computes
the winner of ended Y -games. Could you help them?



XXIV Colombian Programming Contest ACIS REDIS 2010 - ACM ICPC 2

Input

The problem input consists of several cases. A case begins with a line with two integer numbers,
n and m, where n is the order of the grid and m the number of positions that have a black-
coloured token (Benny’s tokens), with 0 ≤ n ≤ 20 and 0 ≤ m ≤ (n+ 2)(n+ 1)/2.

Then, m lines follow, each one with 3 values x, y and z representing coordinate (x, y, z) of a
point in the n-grid with a black token. Values on each input line are separated by one or more
spaces.

The end of the input is signaled by a line

0 0

The input must be read from the file ygame.in.

Output

Output texts for each input case are presented in the same order that the input is read. For
an input case in the puzzle statement, the output should be a single line with the left-justified
text

Willy

or

Benny

accordingly to the fact that Willy or, respectively, Benny wins in that case.

The output must be written to standard output.

Sample Input

3 5

0 1 2

1 0 2

3 0 0

1 1 1

1 2 0

2 3

0 0 2

1 0 1

0 2 0

1 1

1 0 0

0 0

Sample output

Benny

Willy

Willy



XXIV Colombian Programming Contest ACIS REDIS 2010 - ACM ICPC 3

Problem B
Flatland

Source file name: flatland.c, flatland.cpp or flatland.java

Once upon a time there was Flatland, a world whose inhabitants believed was a 2D rectangular
region. Flatlanders (the people inhabiting Flatland) assumed that if somebody traveled long
enough in one direction, he/she would fall down over the edge of Flatland. Animated Caribbean
Movies (ACM) plans to produce a film about Flatland. Before the script of the film is approved,
ACM wants to become familiar with life as it was in Flatland by simulating how the world could
evolve from given initial situations and some conditions determining life and death.

Flatlanders were nomads by nature as they were always traveling: all of them traveled
at the same speed rate on straight lines but each individual had its own direction. As you
may imagine, if one observed the life of a lonely Flatlander, he/she would eventually reach
Flatland’s edge and die. Nevertheless, if two Flatlanders collided, then their fate was improved
as their directions changed: the resulting directions were as the former ones reflected in a mirror
bisecting the angle between the former directions of the crashing inhabitants. So, a Flatlander
survived because a collision with another one could change his/her direction.

However, there were bad news when more than two Flatlanders collided in a single crash:
in that case all of them died, disappearing right there. Note that some Flatlanders could die at
the same time. If this was the case, the last name of the list of deads was remembered as the
Last Dead One in that moment (to simplify, we assume they used our modern English alphabet
and lexicographic order). The survivors venerated the name of the Last Dead One until a new
last dead appeared (and some Flatlander disappeared).

ACM’s film begins with a given population in Flatland, where names, positions, and direc-
tions of every single individual are known. ACM wants you to help them to determine which
would be the name of the last Last Dead One in the whole Flatland’s life.

Input

There are NC test cases to solve, 0 < NC < 100. The first line of the input file has NC. After
that, for each testcase, a set of lines:

• the first line contains a number n, the number of Flatlanders in the initial world (1 ≤
n ≤ 100);

• the second line contains two positive integer numbers B and H separated by a space,
representing the dimensions of Flatland (2 ≤ B,H ≤ 100). Coordinates in Flatland are
points (i, j), with 0 ≤ i ≤ B, 0 ≤ j ≤ H. Flatland’s edges are points with coordinates of
the form (0, j), (i, 0), (B, j) or (i,H);

• n lines (one per Flatlander) with four numbers and one string: x, y, d1, d2 and name
separated by a blank. (x, y) represents the position of the Flatlander (0<x<B, 0<y<H,
and two Flatlanders cannot start in the same position), (d1, d2) represents the direction:



XXIV Colombian Programming Contest ACIS REDIS 2010 - ACM ICPC 4

(d1, d2) is a point on some Flatland’s edge, so that the Flatlander is moving towards it;
name is a string of one to 10 alphabetical uppercase characters, which represents the
name of the Flatlander. You may assume that every Flatlander has a unique name.

The input must be read from the file flatland.in.

Output

For each given case, output one line with the name of the Last Dead One.

The output must be written to standard output.

Sample input

2

2

20 23

1 1 0 0 BOB

3 3 3 0 ALICE

3

20 23

2 2 4 0 ALICE

4 2 2 0 BOB

1 3 0 3 CHARLES

Output for the sample input

ALICE

BOB



XXIV Colombian Programming Contest ACIS REDIS 2010 - ACM ICPC 5

Problem C
Guessing Game

Source file name: guessing.c, guessing.cpp or guessing.java

Alice and Bob love games, but they have already played every single game available at their
local Games ’R U (Games foR U) store. Tired of playing the same games over and over again,
and from not receiving news from the game store, they decided to create their own game. After
a few weeks of hard intellectual work Alice came up with Guessing Game, a two player game
consisting in Alice picking a number and letting Bob try to guess it.

Before playing the game, Alice and Bob agree in the size of the game, given by two integer
positive numbers, the range N and the limit of strikes S. Alice chooses a secret integer number
X, 0 ≤ X < N . Then Bob uses turns telling Alice integer numbers in order to guess her choice.
Each Bob’s guess is answered by Alice with a strike, if Bob’s number is greater than X, with
a smile, if Bob’s number is less than X, or with a stop, if Bob’s number is precisely X. In this
last case the game ends and Bob wins. If Bob receives S strikes the game ends with Alice as
winner.

Bob is very competitive. He wants to develop a winning strategy and he starts trying to do
it in the case N = 3 and S = 2. He notes that guessing 1 in the first turn suffices to win: if
he receives a strike, Alice’s number must be 0 and he can guess it in the next turn; if Alice’s
number is 1, he already wins; otherwise, he receives a smile, and Alice’s number must be 2.
Either way he manages to guess the right number without receiving 2 strikes.

Before facing Alice in an official match, Bob asks for a little help with his training. Indeed,
he wants you to make a program that computes the minimum number of guesses needed by
him to guess any number X, 0 ≤ X < N , receiving at most S − 1 strikes.

Input

Input consists of several test cases. The first line of the input file contains a number C specifying
the number of cases in the file. Then C lines follow, each one containing two integer numbers
N and S, separated by a blank and representing the range and the limit of strikes of a Guessing
Game, respectively. You may assume that 1 ≤ N ≤ 1000 and 1 ≤ S ≤ 20.

The input must be read from the file guessing.in.

Output

For each test case, a single line containing an integer number indicating the minimum number
of guesses needed by Bob to guess every possible number picked by Alice.

The output must be written to standard output.



XXIV Colombian Programming Contest ACIS REDIS 2010 - ACM ICPC 6

Sample Input

3

5 1

3 2

7 2

Sample output

5

2

4



XXIV Colombian Programming Contest ACIS REDIS 2010 - ACM ICPC 7

Problem D
The Melding Plague

Source file name: plague.c, plague.cpp or plague.java

The Nostalgia for Infinity is an ancient ship that once carried hundreds of thousands, but
now its crew is only a handful of Ultras –highly-modified humans adapted to the rigors of
long interstellar spaceflight. And they are desperate to find a cure because most of their crew
members are still infected with the Melding Plague, an alien virus that attacks human cells and
machine nanotechnology in equal measure, perverting them into grotesque combinations. It is
believed that some special mutations of the virus can help cure the dying Ultras.

The Ultras’ patologists identified protein configurations as the essential constituents of the
Melding Plague, some sort of genetic blueprint of the alien virus. Protein configurations are
collections of proteins without any internal order and in which proteins can occur several times.
For example, the following is the protein configuration last found in the infected blood of
Nostalgia for Infinity’s captain John Brannigan:

POMC CAD CAD SCN5A XIRP2 SCN5A ELTD1 .

Protein configurations mutate according to the individual mutation of its proteins. In 1-
step mutation all proteins in the configuration that can mutate indeed mutate, and those which
cannot mutate stay the same. Mutations continue over and over, changing configurations step
by step. Fortunately, Ultras’ pathologists have identified protein configurations that are curable
with appropriate therapies. Then, the hope for an Ultra infected with the Melding Plague is
to have the protein configuration of the virus mutating to a curable protein configuration. Of
course, therapies must be applied within a limit of mutation steps.

A protein mutation is described by an ordered pair of protein names (p, q) stating that
protein p mutates to protein q. IfM = {(CAD, CELR2), (ELTD1, XIRP2)} is a collection of protein
mutations, then the protein configuration of the virus in captain Brannigan’s blood, depicted
above, mutates by M in 1-step to the protein configuration:

POMC CELR2 CELR2 SCN5A XIRP2 SCN5A XIRP2 .

Please remember that because the order in the protein configurations is immaterial, the first
configuration can be written in 1260 different ways, and the 1-step mutation just shown in 630
different ways.

Your task today is to help the surviving Ultras by building a program that, given a collection
of protein mutationsM, an initial protein configuration I, a cure protein configuration C, and
a natural number n representing a search bound:

• if I mutates to C within at most n steps, computes the minimal number of such mutation
steps;

• otherwise, it must inform the Ultras that I cannot mutate to C within n steps.

To easy your burden, Ultras’ pathologist are providing you with extra knowledge: they have
identified that if a cure by this method exists, one need to consider only deterministic mutations
M, i.e., if (p, q1) and (p, q2) are in M, then q1 = q2.



XXIV Colombian Programming Contest ACIS REDIS 2010 - ACM ICPC 8

Input

The input consists of several test cases. A test case begins with a line containing four natural
numbers NM, NI , NC , and n separated by a blank, and with 0 ≤ NM, NI , NC , n ≤ 1000.

If NM, NI , and NC are greater than 0, then NM +NI +NC lines follow. The first NM lines
define the collection M of protein mutations in which each line consists of a pair of strings p
and q separated by a blank, representing protein mutation (p, q). Each one of the following
NI lines consist of a string p and a natural number i separated by a blank, representing the
number of occurrences i of protein p in the initial protein configuration I. Each one of the last
NC lines consist of a string q and a natural number c separated by a blank, representing the
number of occurrences c of protein q in the cure protein configuration C. The natural number
n defines the search bound.

The input ends with NM = NI = NC = n = 0.

The input must be read from the file plague.in.

Output

For each test case your program must output exactly one line as follows:

• if M is not deterministic, then output:

Protein mutations are not deterministic

• if M is deterministic and I mutates to C by M in at most n mutation steps with a
minimum of k mutation steps, then output:

Cure found in k mutation(s)

• otherwise output:

Nostalgia for Infinity is doomed

The output must be written to standard output.



XXIV Colombian Programming Contest ACIS REDIS 2010 - ACM ICPC 9

Sample input

2 5 4 3

CAD CELR2

ELTD1 XIRP2

POMC 1

CAD 2

SCN5A 2

XIRP2 1

ELTD1 1

POMC 1

CELR2 2

SCN5A 2

XIRP2 2

2 3 3 3

GP183 NALCN

CAC1S GP183

CAC1S 2

YCFI 1

MRP6 3

YCFI 1

MRP6 3

NALCN 2

2 3 3 1

GP183 NALCN

CAC1S GP183

CAC1S 2

YCFI 1

MRP6 3

YCFI 1

MRP6 3

NALCN 2

3 2 1 2

CAD YCFI

ELTD1 XIRP2

CAD SCN5A

CAD 1

YCFI 1

YCFI 2

0 0 0 0

Output for the sample input

Cure found in 1 mutation(s)

Cure found in 2 mutation(s)

Nostalgia for Infinity is doomed

Protein mutations are not deterministic



XXIV Colombian Programming Contest ACIS REDIS 2010 - ACM ICPC 10

Problem E
Preferential Romance

Source file name: romance.c, romance.cpp or romance.java

Marriage Success (MS) is a marriage counseling service advising couples on how to improve the
‘get along’ experience. MS’s idea is simple: each spouse writes down his/her preferences for
various criteria of common interest. “Our criteria go beyond physical appearance and passion
that guide early romance and tend to blind judgement. We want to understand your values as
you live day by day. Happy couples are those whose preferences are compatible or can be made
compatible.”

Suppose X and Y are qualities to be considered. If a person declares that X > Y , it means
that this person prefers quality X to quality Y (it does not mean that his/her mate should have
a quality, it is only an opinion). Preferences are obviously irreflexive (i.e., X 6> X) and they are
transitive (i.e., if X > Y and Y > Z, then X > Z –which can be abbreviated as X > Y > Z).

A couple is fully compatible if the preferences of the spouses are consistent, that is, if it is
possible to arrange the qualities of interest of the spouses in a compatibility list reflecting both
of their preferences. In this case, if a spouse says X > Y , qualities X and Y must occur in the
compatibility list and moreover X must be preferred over Y . If a couple is not fully compatible,
then perhaps at least it is passably compatible: their preferences can be made consistent if some
spouse drops at most one preference.

For example, newly-wed Alice and Bob declare their preferences with respect to the follow-
ing qualities (that they observe in a possible mate): biker, cultured, enthusiastic, foodie, juggler,
kayaker, movies, organized, puzzles, rich, theatre, and windsurfer. Their preferences are (observe
that they could say nothing about qualities meaning that such quality does not have any im-
portance):

Alice: organized > puzzles > rich, windsurfer > theatre, and rich > movies.

Bob: kayaker > movies > puzzles and rich > theatre.

In this case Alice and Bob are not fully compatible. To see that, a compatibility list should
have rich before movies (Alice), movies before puzzles (Bob), and puzzles before rich (Alice),
meaning that rich must occur before rich which is impossible. However, the couple is passably
compatible: if Alice drops her preference rich > movies, then there is a compatibility list
modeling both of their preferences:

kayaker > organized > movies > puzzles > rich > windsurfer > theatre.

MS needs a software solution to determine if clients are full compatible, passably compatible
or none of these. Can you help?



XXIV Colombian Programming Contest ACIS REDIS 2010 - ACM ICPC 11

Input

The problem input consists of several test cases, each one defined by a set of lines establishing
preferences of a couple. A test case is defined as follows:

• the first line contains two strings A and B, separated by blanks, representing the name
of the spouses,

• the second line is a sequence of strings of the form (one or more blanks separating items,
including commas and final semicolon):

q11 q12 ... q1r1 , q21 q22 ... q2r2 , ... , qm1 qm2 ... qmrm ;

meaning that person A has sets of preferences (qij’s are strings denoting qualities):

q11 > q12 > ... > q1r1 , q21 > q22... > q2r2 , ..., qm1 > qm2 > ... > qmrm

• the third line is of the form above representing the preferences of B.

Please consider that a quality name is a string with more than 0 and less than 11 characters,
that couples may declare opinions about at most 100 different qualities, and that is guaranteed
that the given data is well defined with respect to the above rules. Also, it is guaranteed
that the information corresponding to each person does not include preference cycles (i.e., each
person is self-compatible).

The end of the input is recognized by a line with A = B = ∗.
The input must be read from the file romance.in.

Output

For each given case, output one line with a single character F, P, or N, meaning that couple
with spouses A and B is full compatible, passably compatible, or not compatible, respectively.

The output must be written to standard output.
Sample input

Alice1 Bob1

organized puzzles rich , windsurfer theatre , rich movies ;

kayaker movies puzzles , rich theatre ;

Alice2 Bob2

organized puzzles rich , windsurfer theatre ;

kayaker movies puzzles , rich theatre ;

Alice3 Bob3

young busy rich , wallet tennis , rich movies , busy toys ;

toys movies busy , rich tennis busy , rich movies ;

* *

Output for the
sample input

P

F

N



XXIV Colombian Programming Contest ACIS REDIS 2010 - ACM ICPC 12

Problem F
Finding Seats Again

Source file name: seats.c, seats.cpp or seats.java

A set of n2 computer scientists went to the movies. Fortunately, the theater they chose has a
square layout: n rows, each one with n seats. However, these scientists are not all from the
same research area and they want to seat together. Indeed, there are K independent research
groups of scientists among them (no scientist belongs to two of them) with a distiguished leader
for each group. Then the leader bought the tickets for his whole group, and he did it in such a
way that all his group could seat occupying a rectangular set of seats (and everyone in this set
of seats belongs to the same group). Every group was placed satisfying this bizarre condition,
although the scientists did not care where the actual assigned areas were.

The usher was informed of the situation and he decided to annotate in a theater map a
satisfactory seats deploying. He thought that if he wrote the position of each group’s leader
in the map indicating besides the corresponding group size, he could tell where to accomodate
every scientist. But he discovered that it is not so easy!

The usher asks for your help. You must tell him a way to place the K rectangular areas with
the given sizes, and with the corresponding leader for each group seated where it was originally
assigned.

Input

Input consists of several test cases, each one defined by a set of lines:

• the first line in the case contains two numbers n and K separated by blanks, with n
representing the size of the theater (0 < n < 20) and K the number of groups (K ≤ 26);

• the next n lines describe the usher’s map. A one-digit decimal number in the map indicates
the seat of a leader and the size of his group. A point indicates that no leader will sit
there.

The end of the input is indicated by the line
0 0

The input must be read from the file seats.in.

Output

For each test case, display an answer consisting in n lines each one of them with n characters
representing a seat occupation for the theater. Each group is assigned to an uppercase letter
and all of its members are identified with that letter. No two groups are assigned to the same
letter.

The output must be written to standard output.



XXIV Colombian Programming Contest ACIS REDIS 2010 - ACM ICPC 13

Sample input

3 3

3.4

...

.2.

7 18

...4.2.

...45..

222..3.

...2..3

.24...2

...2.3.

22..3..

0 0

Output for the sample input

ABB

ABB

ACC

AAAABCC

DDDDBEF

GHIIBEF

GHJKBEF

LLJKBMM

NOJPQQQ

NOJPRRR



XXIV Colombian Programming Contest ACIS REDIS 2010 - ACM ICPC 14

Problem G
Cut the Silver Bar

Source file name: silver.c, silver.cpp or silver.java

A creditor wants a daily payment during n days from a poor miner in debt. Since the miner can
not pay his daily obligation, he has negotiated with the creditor an alternative way, convenient
for both parties, to pay his debt: the miner will give an equivalent of a 1µ (= 0.001mm) long
piece of a silver bar as a guarantee towards the debt. The silver bar owned by the poor miner
is initially nµ units long.

By the end of n days the miner would not have any more silver to give and the creditor
would have received an amount of silver equivalent to that of the silver bar initially owned by
the miner. By then, the miner expected to have enough money to pay the debt at the next day
so that he would have back all his silver.

With this negotiation in mind, the miner has realized that it was not necessary to cut
exactly 1µ silver piece from the bar everyday. For instance, at the third day he could give the
creditor a 3µ silver piece, taking back the equivalent of a 2µ silver piece which the creditor
should already have.

Since cutting the bar was rather laborious and time consuming, the miner wanted to mini-
mize the number of cuts he needed to perform on his silver bar in order to make the daily silver
deposits during the n days. Could you help him?

Input

Input consists of several cases, each one defined by a line containing a positive integer number n
(representing the length in micras of the silver bar and the number of days of the amortization
period). You may assume that 0 < n < 20000.

The end of the input is recognized by a line with 0.

The input must be read from the file silver.in.

Output

For each given case, output one line with a single number: the minimum number of cuts in
which to cut a silver bar of length nµ to guarantee the debt during n days.

The output must be written to standard output.

Sample input

1

5

3

0

Output for the sample input

0

2

1



XXIV Colombian Programming Contest ACIS REDIS 2010 - ACM ICPC 15

Problem H
Cargo Trains

Source file name: trains.c, trains.cpp or trains.java

The International Cargo and Packaging Company Inc. (ICPC Inc.) transports cargo be-
tween two cities: Source City and Sink City. ICPC Inc. does not have its own fleet, instead it
contracts the service of two train companies, the company A and company B. Each company
has its own network that connects some of the cities at prices that the company decides. For
two given cities, it is possible that the route between them is served by both companies, only
one company, or none. ICPC Inc. has reached an agreement with both companies that allows
it to use their combined services at a discount price, but it has to follow these rules:

1. For a given shipment, ICPC Inc. must specify the percentage of participation of each
company given by a for company A and (1− a) for company B, for a given real number
a (0 ≤ a ≤ 1).

2. When the segment between two cities is served by only one company, ICPC Inc. will pay
the price corresponding to that company.

3. When the segment between two cities is served by both companies, the shipment can
be shipped using a train from any of the two companies and will pay a fare equal to
a × CA + (1 − a) × CB, where CA and CB correspond to the fares of company A and B
respectively.

4. A shipment could pass through several intermediate cities. The total cost of the shipment
corresponds to the sum of the costs of the individual segments between cities calculated
according to rules 2 and 3.

ICPC Inc. needs your help to optimize its costs. Specificaly, ICPC Inc. needs to evaluate
the cost of different alternatives that combine the participation of the two train companies in
different proportions. Given the networks and prices of companies A and B, your task is to
calculate the cost of k different combination alternatives. Each alternative is specified by the
participation of company A, which corresponds to a real number 0 ≤ a ≤ 1.

Input

The input contains multiple test cases. Each test case starts with a line with four integer values
separated by spaces, n, ma, mb and k, that correspond to the number of cities, the number of
edges in the network of company A, the number of edges in the network of company B, and the
number of combination alternatives respectively. The ranges for the values are: 2 ≤ n ≤ 100,
1 ≤ ma,mb ≤ 5000, and 1 ≤ k ≤ 10000.

The next ma lines specify the network of company A. Each line has three integer values: Ni,
Nj and Ci,j, separated by spaces, with 0 ≤ Ni, Nj < n and 0 ≤ Ci,j ≤ 1000000. The network is
an undirected graph and each edge is only listed once. Ci,j corresponds to the cost of sending one



XXIV Colombian Programming Contest ACIS REDIS 2010 - ACM ICPC 16

kilogram of cargo from city Ni to city Nj or the other way around. Source City corresponds to
0 and Sink City to n−1. Then next mb lines represent the graph corresponding to the network
of company B represented in the same way as the network of company A. The last k lines of
the test case contain the different combinations to be evaluated, one combination per line. A
combination is represented by a real number, 0 ≤ a ≤ 1, with maximum 4 decimal digits. The
value a specifies company A’s participation. Company B’s participation is implicitely defined
and corresponds to 1− a. You can suppose that there is at least one path between the Source
City and the Sink City using routes served by any company.

The end of the input is indicated by the line
−1 − 1 − 1 − 1.

The input must be read from the file trains.in.

Output

For each combination alternative in each test case, the optimal cost of a trip from a city 0 to
city n − 1 must be printed. If the answer has a decimal part, it has to be truncated without
approximation.

The output must be written to standard output.

Sample input

3 2 2 3

0 1 100

1 2 200

0 1 200

1 2 150

0

1

0.5

-1 -1 -1 -1

Output for the sample input

350

300

325


